docFrontVerify method
ml api
Implementation
Future<IdCheckModel> docFrontVerify(file, type) async {
// print("docFrontVerify ///");
// String fileName = path.basename(file.path);
// String fileName1 = fileName.replaceAll(".jpg", "");
List<int> bytes = await file.readAsBytes();
// Encode the bytes as Base64
String base64File = base64Encode(bytes);
//Logger().i(base64File);
var payload = {
"image_id": '${DateTime.now().microsecond}',
"type": type == "AADHAAR" ? "Aadhaar" : "PAN",
"file": base64File,
};
//log('*** $base64File ***');
// debugPrint('// $base64File //');
//Logger().i(payload);
// Logger().v('// $base64File //');
Response response;
final dio = apiClient();
try {
var data = dio.then((value) async {
//response = await value.post("imageRecognition/idCard",
response = await value.post("imageRecognition/idCardNo", data: payload);
print("docFrontVerify=${response.data}");
print("statusCode=${response.statusCode}");
if (response.statusCode == 200) {
IdCheckModel results = IdCheckModel.fromMap(response.data);
return results;
} else {
throw Exception("failed");
}
});
return data;
} catch (e) {
//print(e);
rethrow;
}
}