TrainingOptions.fromJson constructor
TrainingOptions.fromJson(
- Map json_
Implementation
TrainingOptions.fromJson(core.Map json_)
: this(
activationFn: json_['activationFn'] as core.String?,
adjustStepChanges: json_['adjustStepChanges'] as core.bool?,
approxGlobalFeatureContrib:
json_['approxGlobalFeatureContrib'] as core.bool?,
autoArima: json_['autoArima'] as core.bool?,
autoArimaMaxOrder: json_['autoArimaMaxOrder'] as core.String?,
autoArimaMinOrder: json_['autoArimaMinOrder'] as core.String?,
autoClassWeights: json_['autoClassWeights'] as core.bool?,
batchSize: json_['batchSize'] as core.String?,
boosterType: json_['boosterType'] as core.String?,
budgetHours: (json_['budgetHours'] as core.num?)?.toDouble(),
calculatePValues: json_['calculatePValues'] as core.bool?,
categoryEncodingMethod: json_['categoryEncodingMethod'] as core.String?,
cleanSpikesAndDips: json_['cleanSpikesAndDips'] as core.bool?,
colorSpace: json_['colorSpace'] as core.String?,
colsampleBylevel: (json_['colsampleBylevel'] as core.num?)?.toDouble(),
colsampleBynode: (json_['colsampleBynode'] as core.num?)?.toDouble(),
colsampleBytree: (json_['colsampleBytree'] as core.num?)?.toDouble(),
contributionMetric: json_['contributionMetric'] as core.String?,
dartNormalizeType: json_['dartNormalizeType'] as core.String?,
dataFrequency: json_['dataFrequency'] as core.String?,
dataSplitColumn: json_['dataSplitColumn'] as core.String?,
dataSplitEvalFraction:
(json_['dataSplitEvalFraction'] as core.num?)?.toDouble(),
dataSplitMethod: json_['dataSplitMethod'] as core.String?,
decomposeTimeSeries: json_['decomposeTimeSeries'] as core.bool?,
dimensionIdColumns:
(json_['dimensionIdColumns'] as core.List?)
?.map((value) => value as core.String)
.toList(),
distanceType: json_['distanceType'] as core.String?,
dropout: (json_['dropout'] as core.num?)?.toDouble(),
earlyStop: json_['earlyStop'] as core.bool?,
enableGlobalExplain: json_['enableGlobalExplain'] as core.bool?,
endpointIdleTtl: json_['endpointIdleTtl'] as core.String?,
feedbackType: json_['feedbackType'] as core.String?,
fitIntercept: json_['fitIntercept'] as core.bool?,
forecastLimitLowerBound:
(json_['forecastLimitLowerBound'] as core.num?)?.toDouble(),
forecastLimitUpperBound:
(json_['forecastLimitUpperBound'] as core.num?)?.toDouble(),
hiddenUnits:
(json_['hiddenUnits'] as core.List?)
?.map((value) => value as core.String)
.toList(),
holidayRegion: json_['holidayRegion'] as core.String?,
holidayRegions:
(json_['holidayRegions'] as core.List?)
?.map((value) => value as core.String)
.toList(),
horizon: json_['horizon'] as core.String?,
hparamTuningObjectives:
(json_['hparamTuningObjectives'] as core.List?)
?.map((value) => value as core.String)
.toList(),
huggingFaceModelId: json_['huggingFaceModelId'] as core.String?,
includeDrift: json_['includeDrift'] as core.bool?,
initialLearnRate: (json_['initialLearnRate'] as core.num?)?.toDouble(),
inputLabelColumns:
(json_['inputLabelColumns'] as core.List?)
?.map((value) => value as core.String)
.toList(),
instanceWeightColumn: json_['instanceWeightColumn'] as core.String?,
integratedGradientsNumSteps:
json_['integratedGradientsNumSteps'] as core.String?,
isTestColumn: json_['isTestColumn'] as core.String?,
itemColumn: json_['itemColumn'] as core.String?,
kmeansInitializationColumn:
json_['kmeansInitializationColumn'] as core.String?,
kmeansInitializationMethod:
json_['kmeansInitializationMethod'] as core.String?,
l1RegActivation: (json_['l1RegActivation'] as core.num?)?.toDouble(),
l1Regularization: (json_['l1Regularization'] as core.num?)?.toDouble(),
l2Regularization: (json_['l2Regularization'] as core.num?)?.toDouble(),
labelClassWeights: (json_['labelClassWeights']
as core.Map<core.String, core.dynamic>?)
?.map(
(key, value) =>
core.MapEntry(key, (value as core.num).toDouble()),
),
learnRate: (json_['learnRate'] as core.num?)?.toDouble(),
learnRateStrategy: json_['learnRateStrategy'] as core.String?,
lossType: json_['lossType'] as core.String?,
machineType: json_['machineType'] as core.String?,
maxIterations: json_['maxIterations'] as core.String?,
maxParallelTrials: json_['maxParallelTrials'] as core.String?,
maxReplicaCount: json_['maxReplicaCount'] as core.String?,
maxTimeSeriesLength: json_['maxTimeSeriesLength'] as core.String?,
maxTreeDepth: json_['maxTreeDepth'] as core.String?,
minAprioriSupport:
(json_['minAprioriSupport'] as core.num?)?.toDouble(),
minRelativeProgress:
(json_['minRelativeProgress'] as core.num?)?.toDouble(),
minReplicaCount: json_['minReplicaCount'] as core.String?,
minSplitLoss: (json_['minSplitLoss'] as core.num?)?.toDouble(),
minTimeSeriesLength: json_['minTimeSeriesLength'] as core.String?,
minTreeChildWeight: json_['minTreeChildWeight'] as core.String?,
modelGardenModelName: json_['modelGardenModelName'] as core.String?,
modelRegistry: json_['modelRegistry'] as core.String?,
modelUri: json_['modelUri'] as core.String?,
nonSeasonalOrder:
json_.containsKey('nonSeasonalOrder')
? ArimaOrder.fromJson(
json_['nonSeasonalOrder']
as core.Map<core.String, core.dynamic>,
)
: null,
numClusters: json_['numClusters'] as core.String?,
numFactors: json_['numFactors'] as core.String?,
numParallelTree: json_['numParallelTree'] as core.String?,
numPrincipalComponents: json_['numPrincipalComponents'] as core.String?,
numTrials: json_['numTrials'] as core.String?,
optimizationStrategy: json_['optimizationStrategy'] as core.String?,
optimizer: json_['optimizer'] as core.String?,
pcaExplainedVarianceRatio:
(json_['pcaExplainedVarianceRatio'] as core.num?)?.toDouble(),
pcaSolver: json_['pcaSolver'] as core.String?,
reservationAffinityKey: json_['reservationAffinityKey'] as core.String?,
reservationAffinityType:
json_['reservationAffinityType'] as core.String?,
reservationAffinityValues:
(json_['reservationAffinityValues'] as core.List?)
?.map((value) => value as core.String)
.toList(),
sampledShapleyNumPaths: json_['sampledShapleyNumPaths'] as core.String?,
scaleFeatures: json_['scaleFeatures'] as core.bool?,
standardizeFeatures: json_['standardizeFeatures'] as core.bool?,
subsample: (json_['subsample'] as core.num?)?.toDouble(),
tfVersion: json_['tfVersion'] as core.String?,
timeSeriesDataColumn: json_['timeSeriesDataColumn'] as core.String?,
timeSeriesIdColumn: json_['timeSeriesIdColumn'] as core.String?,
timeSeriesIdColumns:
(json_['timeSeriesIdColumns'] as core.List?)
?.map((value) => value as core.String)
.toList(),
timeSeriesLengthFraction:
(json_['timeSeriesLengthFraction'] as core.num?)?.toDouble(),
timeSeriesTimestampColumn:
json_['timeSeriesTimestampColumn'] as core.String?,
treeMethod: json_['treeMethod'] as core.String?,
trendSmoothingWindowSize:
json_['trendSmoothingWindowSize'] as core.String?,
userColumn: json_['userColumn'] as core.String?,
vertexAiModelVersionAliases:
(json_['vertexAiModelVersionAliases'] as core.List?)
?.map((value) => value as core.String)
.toList(),
walsAlpha: (json_['walsAlpha'] as core.num?)?.toDouble(),
warmStart: json_['warmStart'] as core.bool?,
xgboostVersion: json_['xgboostVersion'] as core.String?,
);