atan2 function
Two arguments arctangent function
y
ordinate. x
abscissa.
Returns phase angle of point (x,y) between -PI
and PI
.
Implementation
double atan2(double y, double x) {
if (x != x || y != y) {
return double.nan;
}
if (y == 0) {
final result = x * y;
final invx = 1.0 / x;
final invy = 1.0 / y;
if (invx == 0) {
// X is infinite
if (x > 0) {
return y; // return +/- 0.0
} else {
return copySign(dart_math.pi, y);
}
}
if (x < 0 || invx < 0) {
if (y < 0 || invy < 0) {
return -dart_math.pi;
} else {
return dart_math.pi;
}
} else {
return result;
}
}
// y cannot now be zero
if (y == double.infinity) {
if (x == double.infinity) {
return dart_math.pi * _f1_4;
}
if (x == double.negativeInfinity) {
return dart_math.pi * _f3_4;
}
return dart_math.pi * _f1_2;
}
if (y == double.negativeInfinity) {
if (x == double.infinity) {
return -dart_math.pi * _f1_4;
}
if (x == double.negativeInfinity) {
return -dart_math.pi * _f3_4;
}
return -dart_math.pi * _f1_2;
}
if (x == double.infinity) {
if (y > 0 || 1 / y > 0) {
return 0.0;
}
if (y < 0 || 1 / y < 0) {
return -0.0;
}
}
if (x == double.negativeInfinity) {
if (y > 0.0 || 1 / y > 0.0) {
return dart_math.pi;
}
if (y < 0 || 1 / y < 0) {
return -dart_math.pi;
}
}
// Neither y nor x can be infinite or NAN here
if (x == 0) {
if (y > 0 || 1 / y > 0) {
return dart_math.pi * _f1_2;
}
if (y < 0 || 1 / y < 0) {
return -dart_math.pi * _f1_2;
}
}
// Compute ratio r = y/x
final r = y / x;
if (r.isInfinite) {
// bypass calculations that can create NaN
return atan(r, 0.0, x < 0);
}
var ra = r; // TODO(rwl): doubleHighPart(r);
var rb = r - ra;
// Split x
final xa = x; // TODO(rwl): doubleHighPart(x);
final xb = x - xa;
rb += (y - ra * xa - ra * xb - rb * xa - rb * xb) / x;
final temp = ra + rb;
rb = -(temp - ra - rb);
ra = temp;
if (ra == 0) {
// Fix up the sign so atan works correctly
ra = copySign(0.0, y);
}
// Call atan
return atan(ra, rb, x < 0);
}