atan function
Internal helper function to compute arctangent.
xa
number from which arctangent is requested.
xb
extra bits for x (may be 0.0).
leftPlane
if true, result angle must be put in the left half plane.
Returns atan(xa + xb)
(or angle shifted by PI
if leftPlane is true)
Implementation
double atan(double xa, [double xb = 0.0, bool leftPlane = false]) {
if (xa == 0.0) {
// Matches +/- 0.0; return correct sign
return leftPlane ? copySign(dart_math.pi, xa) : xa;
}
bool negate;
if (xa < 0) {
// negative
xa = -xa;
xb = -xb;
negate = true;
} else {
negate = false;
}
if (xa > 1.633123935319537E16) {
// Very large input
return (negate != leftPlane)
? (-dart_math.pi * _f1_2)
: (dart_math.pi * _f1_2);
}
// Estimate the closest tabulated arctan value, compute eps = xa-tangentTable
int idx;
if (xa < 1) {
idx = (((-1.7168146928204136 * xa * xa + 8.0) * xa) + 0.5).toInt();
} else {
final oneOverXa = 1 / xa;
idx = (-((-1.7168146928204136 * oneOverXa * oneOverXa + 8.0) * oneOverXa) +
13.07)
.toInt();
}
final ttA = tangentTableA[idx];
final ttB = tangentTableB[idx];
var epsA = xa - ttA;
var epsB = -(epsA - xa + ttA);
epsB += xb - ttB;
var temp = epsA + epsB;
epsB = -(temp - epsA - epsB);
epsA = temp;
/* Compute eps = eps / (1.0 + xa*tangent) */
temp = xa * hex40000000;
var ya = xa + temp - temp;
var yb = xb + xa - ya;
xa = ya;
xb += yb;
//if (idx > 8 || idx == 0)
if (idx == 0) {
/// If the slope of the arctan is gentle enough (< 0.45),
/// this approximation will suffice
//double denom = 1.0 / (1.0 + xa*tangentTableA[idx] + xb*tangentTableA[idx] + xa*tangentTableB[idx] + xb*tangentTableB[idx]);
final denom = 1.0 / (1.0 + (xa + xb) * (ttA + ttB));
//double denom = 1.0 / (1.0 + xa*tangentTableA[idx]);
ya = epsA * denom;
yb = epsB * denom;
} else {
var temp2 = xa * ttA;
var za = 1.0 + temp2;
var zb = -(za - 1.0 - temp2);
temp2 = xb * ttA + xa * ttB;
temp = za + temp2;
zb += -(temp - za - temp2);
za = temp;
zb += xb * ttB;
ya = epsA / za;
temp = ya * hex40000000;
final yaa = (ya + temp) - temp;
final yab = ya - yaa;
temp = za * hex40000000;
final zaa = (za + temp) - temp;
final zab = za - zaa;
/* Correct for rounding in division */
yb = (epsA - yaa * zaa - yaa * zab - yab * zaa - yab * zab) / za;
yb += -epsA * zb / za / za;
yb += epsB / za;
}
epsA = ya;
epsB = yb;
// Evaluate polynomial
final epsA2 = epsA * epsA;
/*
yb = -0.09001346640161823;
yb = yb * epsA2 + 0.11110718400605211;
yb = yb * epsA2 + -0.1428571349122913;
yb = yb * epsA2 + 0.19999999999273194;
yb = yb * epsA2 + -0.33333333333333093;
yb = yb * epsA2 * epsA;
*/
yb = 0.07490822288864472;
yb = yb * epsA2 - 0.09088450866185192;
yb = yb * epsA2 + 0.11111095942313305;
yb = yb * epsA2 - 0.1428571423679182;
yb = yb * epsA2 + 0.19999999999923582;
yb = yb * epsA2 - 0.33333333333333287;
yb = yb * epsA2 * epsA;
ya = epsA;
temp = ya + yb;
yb = -(temp - ya - yb);
ya = temp;
/* Add in effect of epsB. atan'(x) = 1/(1+x^2) */
yb += epsB / (1.0 + epsA * epsA);
final eighths = _eighths[idx];
//result = yb + eighths[idx] + ya;
var za = eighths + ya;
var zb = -(za - eighths - ya);
temp = za + yb;
zb += -(temp - za - yb);
za = temp;
var result = za + zb;
if (leftPlane) {
// Result is in the left plane
final resultb = -(result - za - zb);
final pia = 1.5707963267948966 * 2;
final pib = 6.123233995736766E-17 * 2;
za = pia - result;
zb = -(za - pia + result);
zb += pib - resultb;
result = za + zb;
}
if (negate != leftPlane) {
result = -result;
}
return result;
}