dv_stats library

Statistical functions for data analysis.

Classes

ExponentialRegressionResult
Result of an exponential regression.
KernelDensityResult
Result of kernel density estimation.
LinearRegressionResult
Result of a linear regression.
LoessResult
Result of LOESS (locally weighted scatterplot smoothing).
PolynomialRegressionResult
Result of polynomial regression.

Enums

KernelType
Kernel types for density estimation.

Functions

correlation(List<double> x, List<double> y) double
Computes the Pearson correlation coefficient between two series.
covariance(List<double> x, List<double> y) double
Computes the covariance between two series.
exponentialMovingAverage(List<double> data, {required double alpha}) List<double>
Computes the exponential moving average of a series.
exponentialRegression(List<double> x, List<double> y) ExponentialRegressionResult
Computes exponential regression for the given data points.
kernelDensityEstimation(List<double> data, {double? bandwidth, KernelType kernel = KernelType.gaussian, int nPoints = 100, List<double>? range}) KernelDensityResult
Computes kernel density estimation for a set of data points.
kurtosis(List<double> data) double?
Computes the kurtosis of a distribution.
linearRegression(List<double> x, List<double> y) LinearRegressionResult
Computes simple linear regression for the given data points.
loess(List<double> x, List<double> y, {double span = 0.75, int degree = 1}) LoessResult
Computes LOESS smoothing for the given data.
movingAverage(List<double> data, {required int window, bool center = false}) List<double?>
Computes the simple moving average of a series.
polynomialRegression(List<double> x, List<double> y, {required int degree}) PolynomialRegressionResult
Computes polynomial regression for the given data points.
skewness(List<double> data) double?
Computes the skewness of a distribution.
spearmanCorrelation(List<double> x, List<double> y) double
Computes the Spearman rank correlation coefficient.
tTest(List<double> a, List<double> b) → (double, double)
Performs a two-sample t-test.