main function
void
main()
Implementation
void main() {
print("--- ViT-based Object Detection Example ---");
// Model parameters
final imageSize = 32; // Example: Small 32x32 image
final patchSize = 8; // Patches will be 8x8 pixels
final numChannels = 3; // RGB image
final embedSize = 64; // Transformer embedding dimension
final numClasses =
5; // Example: 5 object classes (e.g., car, person, dog, cat, bike)
final numLayers = 2; // Small number of layers for quick execution
final numHeads = 4; // Number of attention heads
// Instantiate the ViTObjectDetector model
final detector = ViTObjectDetector(
imageSize: imageSize,
patchSize: patchSize,
numChannels: numChannels,
embedSize: embedSize,
numLayers: numLayers,
numHeads: numHeads,
numClasses: numClasses,
);
final optimizer = SGD(detector.parameters(), 0.01);
// --- Dummy Image Data and Ground Truth ---
// For a single image, we'll simulate one ground truth object.
// In real detection, you'd have lists of boxes and classes per image.
final int totalPixels = imageSize * imageSize * numChannels;
final Random random = Random();
// Dummy image data
final List<double> dummyImageData =
List.generate(totalPixels, (i) => random.nextDouble());
// Dummy Ground Truth for ONE object:
// Bounding box: [x_center, y_center, width, height] (normalized 0-1)
final List<double> gtBboxCoords = [
random.nextDouble(), // x_center
random.nextDouble(), // y_center
random.nextDouble() * 0.5 + 0.1, // width (0.1 to 0.6)
random.nextDouble() * 0.5 + 0.1, // height (0.1 to 0.6)
];
// Class label (0 to numClasses-1, or numClasses for background)
final int gtClassId = random.nextInt(numClasses); // A random object class
print(
"Dummy Image Data created (first 10 values): ${dummyImageData.sublist(0, 10).map((v) => v.toStringAsFixed(2)).toList()}...");
print(
"Ground Truth Bbox: ${gtBboxCoords.map((v) => v.toStringAsFixed(2)).toList()}");
print("Ground Truth Class: $gtClassId");
// --- Training Loop (Highly Simplified for ONE object) ---
final epochs = 100; // Run for a few epochs
print("\nTraining Object Detector for $epochs epochs...");
for (int epoch = 0; epoch < epochs; epoch++) {
// 1. Forward pass
final Map<String, ValueVector> predictions =
detector.forward(dummyImageData);
final ValueVector predictedBbox = predictions['boxes']!;
final ValueVector predictedLogits = predictions['logits']!;
// 2. Calculate Loss
// a. Bounding Box Loss (L1 Loss)
Value bboxLoss = Value(0.0);
for (int i = 0; i < 4; i++) {
bboxLoss += (predictedBbox.values[i] - Value(gtBboxCoords[i])).abs();
}
bboxLoss = bboxLoss / Value(4.0); // Average L1 loss
// b. Classification Loss (Cross-Entropy)
// Convert ground truth class to one-hot vector (including background)
final gtClassVector = ValueVector(List.generate(
numClasses + 1, // +1 for background class
(i) => Value(i == gtClassId ? 1.0 : 0.0),
));
final classLoss = predictedLogits.softmax().crossEntropy(gtClassVector);
// Total loss (simple sum, in real detectors, weights are used)
final totalLoss = bboxLoss + classLoss;
// 3. Backward pass and optimization step
detector.zeroGrad(); // Clear gradients
totalLoss.backward(); // Compute gradients
optimizer.step(); // Update parameters
if (epoch % 5 == 0 || epoch == epochs - 1) {
print("Epoch $epoch | Total Loss: ${totalLoss.data.toStringAsFixed(4)} "
"(Bbox Loss: ${bboxLoss.data.toStringAsFixed(4)}, "
"Class Loss: ${classLoss.data.toStringAsFixed(4)})");
}
}
print("✅ Object Detector training complete.");
// --- Inference Example ---
print("\n--- Object Detector Inference ---");
final List<double> newDummyImageData = List.generate(
totalPixels, (i) => random.nextDouble()); // A new random image
print(
"New Dummy Image Data created (first 10 values): ${newDummyImageData.sublist(0, 10).map((v) => v.toStringAsFixed(2)).toList()}...");
final Map<String, ValueVector> inferencePredictions =
detector.forward(newDummyImageData);
final ValueVector inferredBbox = inferencePredictions['boxes']!;
final ValueVector inferredLogits = inferencePredictions['logits']!;
final ValueVector inferredProbs = inferredLogits.softmax();
// Find the predicted class (index with highest probability)
double maxProb = -1.0;
int predictedClass = -1;
for (int i = 0; i < inferredProbs.values.length; i++) {
if (inferredProbs.values[i].data > maxProb) {
maxProb = inferredProbs.values[i].data;
predictedClass = i;
}
}
print(
"Inferred Bbox: ${inferredBbox.values.map((v) => v.data.toStringAsFixed(4)).toList()}");
print(
"Inferred Class Probabilities: ${inferredProbs.values.map((v) => v.data.toStringAsFixed(4)).toList()}");
print(
"Predicted Class: $predictedClass (with probability ${maxProb.toStringAsFixed(4)})");
print(
"\nNote: This is a highly simplified object detection example. Real-world detectors handle multiple objects, non-maximum suppression, and more complex loss functions and evaluation metrics.");
}