main function
void
main()
Implementation
void main() {
print("--- Conceptual Chess Reinforcement Learning Example ---");
// Model parameters
final embedSize = 128; // Embedding dimension for pieces/squares
final numLayers = 2; // Number of Transformer Encoder layers
final numHeads = 8; // Number of attention heads
// Instantiate the Chess Transformer model
final chessModel = ChessTransformer(
embedSize: embedSize,
numLayers: numLayers,
numHeads: numHeads,
);
final optimizer = SGD(chessModel.parameters(), 0.001); // Learning rate
// --- Conceptual Board State ---
// A simplified starting board (e.g., standard chess starting position for white to move)
// This is a flattened list of 64 integers, each representing a piece ID.
// This is for demonstration; a real system would generate this from a Chess environment.
List<int> initialBoardState = [
// Rank 1 (White pieces)
WHITE_ROOK, WHITE_KNIGHT, WHITE_BISHOP, WHITE_QUEEN, WHITE_KING,
WHITE_BISHOP, WHITE_KNIGHT, WHITE_ROOK,
// Rank 2 (White pawns)
WHITE_PAWN, WHITE_PAWN, WHITE_PAWN, WHITE_PAWN, WHITE_PAWN, WHITE_PAWN,
WHITE_PAWN, WHITE_PAWN,
// Ranks 3-6 (Empty)
...List.filled(4 * BOARD_SIZE, EMPTY_SQUARE_ID),
// Rank 7 (Black pawns)
BLACK_PAWN, BLACK_PAWN, BLACK_PAWN, BLACK_PAWN, BLACK_PAWN, BLACK_PAWN,
BLACK_PAWN, BLACK_PAWN,
// Rank 8 (Black pieces)
BLACK_ROOK, BLACK_KNIGHT, BLACK_BISHOP, BLACK_QUEEN, BLACK_KING,
BLACK_BISHOP, BLACK_KNIGHT, BLACK_ROOK,
];
print(
"Conceptual Board State loaded (first 8 squares): ${initialBoardState.sublist(0, 8)}");
print("Total possible moves the model can predict: $NUM_POSSIBLE_MOVES");
// --- Conceptual RL Training Loop (Offline Behavioral Cloning / Imitation Learning) ---
// In a real RL setup, this would involve interaction with a chess environment.
// Here, we simulate learning from a "target move" from an "expert."
final epochs = 100;
final random = Random();
// Pick a random target move for this simplified example (e.g., e2-e4 is (48, 36))
// In a real scenario, this would come from an expert game or an RL algorithm.
final int dummyTargetMoveIndex = random
.nextInt(NUM_POSSIBLE_MOVES); // e.g., for e2-e4 it's 48*64 + 36 = 3100
print(
"\nDummy Target Move Index (from expert/target policy): $dummyTargetMoveIndex");
print("\nTraining Chess Transformer (simulated behavioral cloning)...");
for (int epoch = 0; epoch < epochs; epoch++) {
// 1. Forward pass: Get logits for all possible moves
final moveLogits = chessModel.forward(
initialBoardState); // Returns List<Value> of size NUM_POSSIBLE_MOVES
// 2. Calculate Cross-Entropy Loss against the target move
final targetMoveVector = ValueVector(List.generate(
NUM_POSSIBLE_MOVES,
(i) => Value(i == dummyTargetMoveIndex
? 1.0
: 0.0), // One-hot encoding of the target move
));
final logitsVector = ValueVector(moveLogits);
final loss = logitsVector.softmax().crossEntropy(targetMoveVector);
// 3. Backward pass and optimization step
chessModel.zeroGrad(); // Clear gradients
loss.backward(); // Compute gradients
optimizer.step(); // Update parameters
if (epoch % 1 == 0 || epoch == epochs - 1) {
print("Epoch $epoch | Loss: ${loss.data.toStringAsFixed(4)}");
}
}
print("✅ Chess Transformer (policy network) training complete.");
// --- Inference Example: Predicting a Move ---
print("\n--- Chess Inference ---");
final inferenceLogits = chessModel.forward(initialBoardState);
final predictedMoveProbs = ValueVector(inferenceLogits).softmax();
// Find the predicted move (index with highest probability)
double maxProb = -1.0;
int predictedMoveIndex = -1;
for (int i = 0; i < predictedMoveProbs.values.length; i++) {
if (predictedMoveProbs.values[i].data > maxProb) {
maxProb = predictedMoveProbs.values[i].data;
predictedMoveIndex = i;
}
}
// Convert predictedMoveIndex back to (from_square, to_square)
final int fromSquare = predictedMoveIndex ~/ NUM_SQUARES;
final int toSquare = predictedMoveIndex % NUM_SQUARES;
print(
"Inference Logits (first 10): ${inferenceLogits.sublist(0, 10).map((v) => v.data.toStringAsFixed(4)).toList()}...");
print(
"Predicted Move Index: $predictedMoveIndex (Prob: ${maxProb.toStringAsFixed(4)})");
print(
"Conceptual Predicted Move: From square $fromSquare to square $toSquare");
print("\n--- Important Considerations for Real Chess RL ---");
print(
"1. **Actual RL:** This example only shows the policy network. A full RL setup needs an environment, reward functions, and algorithms like PPO or AlphaZero for training.");
print(
"2. **Legal Moves:** The current model predicts over ALL 64*64 possible (start, end) pairs. A real chess engine would filter these to only legal moves or mask illegal moves during training/inference.");
print(
"3. **Board Representation:** More complex representations might include castling rights, en passant, turn to move, halfmove clock, etc.");
print(
"4. **Action Space:** More precise action encoding for special moves (promotion) would be needed.");
}