ztpmv function
void
ztpmv()
Implementation
void ztpmv(
final String UPLO,
final String TRANS,
final String DIAG,
final int N,
final Array<Complex> AP_,
final Array<Complex> X_,
final int INCX,
) {
final AP = AP_.having();
final X = X_.having();
Complex TEMP;
int I, INFO, IX, J, JX, K, KK, KX = 0;
bool NOCONJ, NOUNIT;
// Test the input parameters.
INFO = 0;
if (!lsame(UPLO, 'U') && !lsame(UPLO, 'L')) {
INFO = 1;
} else if (!lsame(TRANS, 'N') && !lsame(TRANS, 'T') && !lsame(TRANS, 'C')) {
INFO = 2;
} else if (!lsame(DIAG, 'U') && !lsame(DIAG, 'N')) {
INFO = 3;
} else if (N < 0) {
INFO = 4;
} else if (INCX == 0) {
INFO = 7;
}
if (INFO != 0) {
xerbla('ZTPMV', INFO);
return;
}
// Quick return if possible.
if (N == 0) return;
NOCONJ = lsame(TRANS, 'T');
NOUNIT = lsame(DIAG, 'N');
// Set up the start point in X if the increment is not unity. This
// will be ( N - 1 )*INCX too small for descending loops.
if (INCX <= 0) {
KX = 1 - (N - 1) * INCX;
} else if (INCX != 1) {
KX = 1;
}
// Start the operations. In this version the elements of AP are
// accessed sequentially with one pass through AP.
if (lsame(TRANS, 'N')) {
// Form x:= A*x.
if (lsame(UPLO, 'U')) {
KK = 1;
if (INCX == 1) {
for (J = 1; J <= N; J++) {
if (X[J] != Complex.zero) {
TEMP = X[J];
K = KK;
for (I = 1; I <= J - 1; I++) {
X[I] += TEMP * AP[K];
K++;
}
if (NOUNIT) X[J] *= AP[KK + J - 1];
}
KK += J;
}
} else {
JX = KX;
for (J = 1; J <= N; J++) {
if (X[JX] != Complex.zero) {
TEMP = X[JX];
IX = KX;
for (K = KK; K <= KK + J - 2; K++) {
X[IX] += TEMP * AP[K];
IX += INCX;
}
if (NOUNIT) X[JX] *= AP[KK + J - 1];
}
JX += INCX;
KK += J;
}
}
} else {
KK = (N * (N + 1)) ~/ 2;
if (INCX == 1) {
for (J = N; J >= 1; J--) {
if (X[J] != Complex.zero) {
TEMP = X[J];
K = KK;
for (I = N; I >= J + 1; I--) {
X[I] += TEMP * AP[K];
K--;
}
if (NOUNIT) X[J] *= AP[KK - N + J];
}
KK -= (N - J + 1);
}
} else {
KX += (N - 1) * INCX;
JX = KX;
for (J = N; J >= 1; J--) {
if (X[JX] != Complex.zero) {
TEMP = X[JX];
IX = KX;
for (K = KK; K >= KK - (N - (J + 1)); K--) {
X[IX] += TEMP * AP[K];
IX -= INCX;
}
if (NOUNIT) X[JX] *= AP[KK - N + J];
}
JX -= INCX;
KK -= (N - J + 1);
}
}
}
} else {
// Form x := A**T*x or x := A**H*x.
if (lsame(UPLO, 'U')) {
KK = (N * (N + 1)) ~/ 2;
if (INCX == 1) {
for (J = N; J >= 1; J--) {
TEMP = X[J];
K = KK - 1;
if (NOCONJ) {
if (NOUNIT) TEMP *= AP[KK];
for (I = J - 1; I >= 1; I--) {
TEMP += AP[K] * X[I];
K--;
}
} else {
if (NOUNIT) TEMP *= AP[KK].conjugate();
for (I = J - 1; I >= 1; I--) {
TEMP += AP[K].conjugate() * X[I];
K--;
}
}
X[J] = TEMP;
KK -= J;
}
} else {
JX = KX + (N - 1) * INCX;
for (J = N; J >= 1; J--) {
TEMP = X[JX];
IX = JX;
if (NOCONJ) {
if (NOUNIT) TEMP *= AP[KK];
for (K = KK - 1; K >= KK - J + 1; K--) {
IX -= INCX;
TEMP += AP[K] * X[IX];
}
} else {
if (NOUNIT) TEMP *= AP[KK].conjugate();
for (K = KK - 1; K >= KK - J + 1; K--) {
IX -= INCX;
TEMP += AP[K].conjugate() * X[IX];
}
}
X[JX] = TEMP;
JX -= INCX;
KK -= J;
}
}
} else {
KK = 1;
if (INCX == 1) {
for (J = 1; J <= N; J++) {
TEMP = X[J];
K = KK + 1;
if (NOCONJ) {
if (NOUNIT) TEMP *= AP[KK];
for (I = J + 1; I <= N; I++) {
TEMP += AP[K] * X[I];
K++;
}
} else {
if (NOUNIT) TEMP *= AP[KK].conjugate();
for (I = J + 1; I <= N; I++) {
TEMP += AP[K].conjugate() * X[I];
K++;
}
}
X[J] = TEMP;
KK += (N - J + 1);
}
} else {
JX = KX;
for (J = 1; J <= N; J++) {
TEMP = X[JX];
IX = JX;
if (NOCONJ) {
if (NOUNIT) TEMP *= AP[KK];
for (K = KK + 1; K <= KK + N - J; K++) {
IX += INCX;
TEMP += AP[K] * X[IX];
}
} else {
if (NOUNIT) TEMP *= AP[KK].conjugate();
for (K = KK + 1; K <= KK + N - J; K++) {
IX += INCX;
TEMP += AP[K].conjugate() * X[IX];
}
}
X[JX] = TEMP;
JX += INCX;
KK += (N - J + 1);
}
}
}
}
}