ztbsv function
void
ztbsv()
Implementation
void ztbsv(
final String UPLO,
final String TRANS,
final String DIAG,
final int N,
final int K,
final Matrix<Complex> A_,
final int LDA,
final Array<Complex> X_,
final int INCX,
) {
final A = A_.having(ld: LDA);
final X = X_.having();
Complex TEMP;
int I, INFO, IX, J, JX, KPLUS1, KX = 0, L;
bool NOCONJ, NOUNIT;
// Test the input parameters.
INFO = 0;
if (!lsame(UPLO, 'U') && !lsame(UPLO, 'L')) {
INFO = 1;
} else if (!lsame(TRANS, 'N') && !lsame(TRANS, 'T') && !lsame(TRANS, 'C')) {
INFO = 2;
} else if (!lsame(DIAG, 'U') && !lsame(DIAG, 'N')) {
INFO = 3;
} else if (N < 0) {
INFO = 4;
} else if (K < 0) {
INFO = 5;
} else if (LDA < (K + 1)) {
INFO = 7;
} else if (INCX == 0) {
INFO = 9;
}
if (INFO != 0) {
xerbla('ZTBSV', INFO);
return;
}
// Quick return if possible.
if (N == 0) return;
NOCONJ = lsame(TRANS, 'T');
NOUNIT = lsame(DIAG, 'N');
// Set up the start point in X if the increment is not unity. This
// will be ( N - 1 )*INCX too small for descending loops.
if (INCX <= 0) {
KX = 1 - (N - 1) * INCX;
} else if (INCX != 1) {
KX = 1;
}
// Start the operations. In this version the elements of A are
// accessed by sequentially with one pass through A.
if (lsame(TRANS, 'N')) {
// Form x := inv( A )*x.
if (lsame(UPLO, 'U')) {
KPLUS1 = K + 1;
if (INCX == 1) {
for (J = N; J >= 1; J--) {
if (X[J] != Complex.zero) {
L = KPLUS1 - J;
if (NOUNIT) X[J] /= A[KPLUS1][J];
TEMP = X[J];
for (I = J - 1; I >= max(1, J - K); I--) {
X[I] -= TEMP * A[L + I][J];
}
}
}
} else {
KX += (N - 1) * INCX;
JX = KX;
for (J = N; J >= 1; J--) {
KX -= INCX;
if (X[JX] != Complex.zero) {
IX = KX;
L = KPLUS1 - J;
if (NOUNIT) X[JX] /= A[KPLUS1][J];
TEMP = X[JX];
for (I = J - 1; I >= max(1, J - K); I--) {
X[IX] -= TEMP * A[L + I][J];
IX -= INCX;
}
}
JX -= INCX;
}
}
} else {
if (INCX == 1) {
for (J = 1; J <= N; J++) {
if (X[J] != Complex.zero) {
L = 1 - J;
if (NOUNIT) X[J] /= A[1][J];
TEMP = X[J];
for (I = J + 1; I <= min(N, J + K); I++) {
X[I] -= TEMP * A[L + I][J];
}
}
}
} else {
JX = KX;
for (J = 1; J <= N; J++) {
KX += INCX;
if (X[JX] != Complex.zero) {
IX = KX;
L = 1 - J;
if (NOUNIT) X[JX] /= A[1][J];
TEMP = X[JX];
for (I = J + 1; I <= min(N, J + K); I++) {
X[IX] -= TEMP * A[L + I][J];
IX += INCX;
}
}
JX += INCX;
}
}
}
} else {
// Form x := inv( A**T )*x or x := inv( A**H )*x.
if (lsame(UPLO, 'U')) {
KPLUS1 = K + 1;
if (INCX == 1) {
for (J = 1; J <= N; J++) {
TEMP = X[J];
L = KPLUS1 - J;
if (NOCONJ) {
for (I = max(1, J - K); I <= J - 1; I++) {
TEMP -= A[L + I][J] * X[I];
}
if (NOUNIT) TEMP /= A[KPLUS1][J];
} else {
for (I = max(1, J - K); I <= J - 1; I++) {
TEMP -= A[L + I][J].conjugate() * X[I];
}
if (NOUNIT) TEMP /= A[KPLUS1][J].conjugate();
}
X[J] = TEMP;
}
} else {
JX = KX;
for (J = 1; J <= N; J++) {
TEMP = X[JX];
IX = KX;
L = KPLUS1 - J;
if (NOCONJ) {
for (I = max(1, J - K); I <= J - 1; I++) {
TEMP -= A[L + I][J] * X[IX];
IX += INCX;
}
if (NOUNIT) TEMP /= A[KPLUS1][J];
} else {
for (I = max(1, J - K); I <= J - 1; I++) {
TEMP -= A[L + I][J].conjugate() * X[IX];
IX += INCX;
}
if (NOUNIT) TEMP /= A[KPLUS1][J].conjugate();
}
X[JX] = TEMP;
JX += INCX;
if (J > K) KX += INCX;
}
}
} else {
if (INCX == 1) {
for (J = N; J >= 1; J--) {
TEMP = X[J];
L = 1 - J;
if (NOCONJ) {
for (I = min(N, J + K); I >= J + 1; I--) {
TEMP -= A[L + I][J] * X[I];
}
if (NOUNIT) TEMP /= A[1][J];
} else {
for (I = min(N, J + K); I >= J + 1; I--) {
TEMP -= A[L + I][J].conjugate() * X[I];
}
if (NOUNIT) TEMP /= A[1][J].conjugate();
}
X[J] = TEMP;
}
} else {
KX += (N - 1) * INCX;
JX = KX;
for (J = N; J >= 1; J--) {
TEMP = X[JX];
IX = KX;
L = 1 - J;
if (NOCONJ) {
for (I = min(N, J + K); I >= J + 1; I--) {
TEMP -= A[L + I][J] * X[IX];
IX -= INCX;
}
if (NOUNIT) TEMP /= A[1][J];
} else {
for (I = min(N, J + K); I >= J + 1; I--) {
TEMP -= A[L + I][J].conjugate() * X[IX];
IX -= INCX;
}
if (NOUNIT) TEMP /= A[1][J].conjugate();
}
X[JX] = TEMP;
JX -= INCX;
if ((N - J) >= K) KX -= INCX;
}
}
}
}
}