zherk function
void
zherk()
Implementation
void zherk(
final String UPLO,
final String TRANS,
final int N,
final int K,
final double ALPHA,
final Matrix<Complex> A_,
final int LDA,
final double BETA,
final Matrix<Complex> C_,
final int LDC,
) {
final A = A_.having(ld: LDA);
final C = C_.having(ld: LDC);
Complex TEMP;
double RTEMP;
int I, INFO, J, L, NROWA;
bool UPPER;
const ONE = 1.0, ZERO = 0.0;
// Test the input parameters.
if (lsame(TRANS, 'N')) {
NROWA = N;
} else {
NROWA = K;
}
UPPER = lsame(UPLO, 'U');
INFO = 0;
if (!UPPER && !lsame(UPLO, 'L')) {
INFO = 1;
} else if (!lsame(TRANS, 'N') && !lsame(TRANS, 'C')) {
INFO = 2;
} else if (N < 0) {
INFO = 3;
} else if (K < 0) {
INFO = 4;
} else if (LDA < max(1, NROWA)) {
INFO = 7;
} else if (LDC < max(1, N)) {
INFO = 10;
}
if (INFO != 0) {
xerbla('ZHERK', INFO);
return;
}
// Quick return if possible.
if ((N == 0) || (((ALPHA == ZERO) || (K == 0)) && (BETA == ONE))) return;
// And when alpha == zero.
if (ALPHA == ZERO) {
if (UPPER) {
if (BETA == ZERO) {
for (J = 1; J <= N; J++) {
for (I = 1; I <= J; I++) {
C[I][J] = Complex.zero;
}
}
} else {
for (J = 1; J <= N; J++) {
for (I = 1; I <= J - 1; I++) {
C[I][J] = BETA.toComplex() * C[I][J];
}
C[J][J] = BETA.toComplex() * C[J][J].real.toComplex();
}
}
} else {
if (BETA == ZERO) {
for (J = 1; J <= N; J++) {
for (I = J; I <= N; I++) {
C[I][J] = Complex.zero;
}
}
} else {
for (J = 1; J <= N; J++) {
C[J][J] = (BETA * C[J][J].real).toComplex();
for (I = J + 1; I <= N; I++) {
C[I][J] = BETA.toComplex() * C[I][J];
}
}
}
}
return;
}
// Start the operations.
if (lsame(TRANS, 'N')) {
// Form C := alpha*A*A**H + beta*C.
if (UPPER) {
for (J = 1; J <= N; J++) {
if (BETA == ZERO) {
for (I = 1; I <= J; I++) {
C[I][J] = Complex.zero;
}
} else if (BETA != ONE) {
for (I = 1; I <= J - 1; I++) {
C[I][J] = BETA.toComplex() * C[I][J];
}
C[J][J] = (BETA * C[J][J].real).toComplex();
} else {
C[J][J] = C[J][J].real.toComplex();
}
for (L = 1; L <= K; L++) {
if (A[J][L] != Complex.zero) {
TEMP = ALPHA.toComplex() * A[J][L].conjugate();
for (I = 1; I <= J - 1; I++) {
C[I][J] += TEMP * A[I][L];
}
C[J][J] = (C[J][J].real + (TEMP * A[I][L]).real).toComplex();
}
}
}
} else {
for (J = 1; J <= N; J++) {
if (BETA == ZERO) {
for (I = J; I <= N; I++) {
C[I][J] = Complex.zero;
}
} else if (BETA != ONE) {
C[J][J] = (BETA * C[J][J].real).toComplex();
for (I = J + 1; I <= N; I++) {
C[I][J] = BETA.toComplex() * C[I][J];
}
} else {
C[J][J] = C[J][J].real.toComplex();
}
for (L = 1; L <= K; L++) {
if (A[J][L] != Complex.zero) {
TEMP = ALPHA.toComplex() * A[J][L].conjugate();
C[J][J] = (C[J][J].real + (TEMP * A[J][L]).real).toComplex();
for (I = J + 1; I <= N; I++) {
C[I][J] += TEMP * A[I][L];
}
}
}
}
}
} else {
// Form C := alpha*A**H*A + beta*C.
if (UPPER) {
for (J = 1; J <= N; J++) {
for (I = 1; I <= J - 1; I++) {
TEMP = Complex.zero;
for (L = 1; L <= K; L++) {
TEMP += A[L][I].conjugate() * A[L][J];
}
if (BETA == ZERO) {
C[I][J] = ALPHA.toComplex() * TEMP;
} else {
C[I][J] = ALPHA.toComplex() * TEMP + BETA.toComplex() * C[I][J];
}
}
RTEMP = ZERO;
for (L = 1; L <= K; L++) {
RTEMP += (A[L][J].conjugate() * A[L][J]).real;
}
if (BETA == ZERO) {
C[J][J] = (ALPHA * RTEMP).toComplex();
} else {
C[J][J] = (ALPHA * RTEMP + BETA * C[J][J].real).toComplex();
}
}
} else {
for (J = 1; J <= N; J++) {
RTEMP = ZERO;
for (L = 1; L <= K; L++) {
RTEMP += (A[L][J].conjugate() * A[L][J]).real;
}
if (BETA == ZERO) {
C[J][J] = (ALPHA * RTEMP).toComplex();
} else {
C[J][J] = (ALPHA * RTEMP + BETA * C[J][J].real).toComplex();
}
for (I = J + 1; I <= N; I++) {
TEMP = Complex.zero;
for (L = 1; L <= K; L++) {
TEMP += A[L][I].conjugate() * A[L][J];
}
if (BETA == ZERO) {
C[I][J] = ALPHA.toComplex() * TEMP;
} else {
C[I][J] = ALPHA.toComplex() * TEMP + BETA.toComplex() * C[I][J];
}
}
}
}
}
}