zhemm function
void
zhemm()
Implementation
void zhemm(
final String SIDE,
final String UPLO,
final int M,
final int N,
final Complex ALPHA,
final Matrix<Complex> A_,
final int LDA,
final Matrix<Complex> B_,
final int LDB,
final Complex BETA,
final Matrix<Complex> C_,
final int LDC,
) {
final A = A_.having(ld: LDA);
final B = B_.having(ld: LDB);
final C = C_.having(ld: LDC);
Complex TEMP1, TEMP2;
int I, INFO, J, K, NROWA;
bool UPPER;
// Set NROWA as the number of rows of A.
if (lsame(SIDE, 'L')) {
NROWA = M;
} else {
NROWA = N;
}
UPPER = lsame(UPLO, 'U');
// Test the input parameters.
INFO = 0;
if (!lsame(SIDE, 'L') && !lsame(SIDE, 'R')) {
INFO = 1;
} else if (!UPPER && !lsame(UPLO, 'L')) {
INFO = 2;
} else if (M < 0) {
INFO = 3;
} else if (N < 0) {
INFO = 4;
} else if (LDA < max(1, NROWA)) {
INFO = 7;
} else if (LDB < max(1, M)) {
INFO = 9;
} else if (LDC < max(1, M)) {
INFO = 12;
}
if (INFO != 0) {
xerbla('ZHEMM', INFO);
return;
}
// Quick return if possible.
if ((M == 0) ||
(N == 0) ||
((ALPHA == Complex.zero) && (BETA == Complex.one))) return;
// And when alpha == zero.
if (ALPHA == Complex.zero) {
if (BETA == Complex.zero) {
for (J = 1; J <= N; J++) {
for (I = 1; I <= M; I++) {
C[I][J] = Complex.zero;
}
}
} else {
for (J = 1; J <= N; J++) {
for (I = 1; I <= M; I++) {
C[I][J] = BETA * C[I][J];
}
}
}
return;
}
// Start the operations.
if (lsame(SIDE, 'L')) {
// Form C := alpha*A*B + beta*C.
if (UPPER) {
for (J = 1; J <= N; J++) {
for (I = 1; I <= M; I++) {
TEMP1 = ALPHA * B[I][J];
TEMP2 = Complex.zero;
for (K = 1; K <= I - 1; K++) {
C[K][J] += TEMP1 * A[K][I];
TEMP2 += B[K][J] * A[K][I].conjugate();
}
if (BETA == Complex.zero) {
C[I][J] = TEMP1 * A[I][I].real.toComplex() + ALPHA * TEMP2;
} else {
C[I][J] = BETA * C[I][J] +
TEMP1 * A[I][I].real.toComplex() +
ALPHA * TEMP2;
}
}
}
} else {
for (J = 1; J <= N; J++) {
for (I = M; I >= 1; I--) {
TEMP1 = ALPHA * B[I][J];
TEMP2 = Complex.zero;
for (K = I + 1; K <= M; K++) {
C[K][J] += TEMP1 * A[K][I];
TEMP2 += B[K][J] * A[K][I].conjugate();
}
if (BETA == Complex.zero) {
C[I][J] = TEMP1 * A[I][I].real.toComplex() + ALPHA * TEMP2;
} else {
C[I][J] = BETA * C[I][J] +
TEMP1 * A[I][I].real.toComplex() +
ALPHA * TEMP2;
}
}
}
}
} else {
// Form C := alpha*B*A + beta*C.
for (J = 1; J <= N; J++) {
TEMP1 = ALPHA * A[J][J].real.toComplex();
if (BETA == Complex.zero) {
for (I = 1; I <= M; I++) {
C[I][J] = TEMP1 * B[I][J];
}
} else {
for (I = 1; I <= M; I++) {
C[I][J] = BETA * C[I][J] + TEMP1 * B[I][J];
}
}
for (K = 1; K <= J - 1; K++) {
if (UPPER) {
TEMP1 = ALPHA * A[K][J];
} else {
TEMP1 = ALPHA * A[J][K].conjugate();
}
for (I = 1; I <= M; I++) {
C[I][J] += TEMP1 * B[I][K];
}
}
for (K = J + 1; K <= N; K++) {
if (UPPER) {
TEMP1 = ALPHA * A[J][K].conjugate();
} else {
TEMP1 = ALPHA * A[K][J];
}
for (I = 1; I <= M; I++) {
C[I][J] += TEMP1 * B[I][K];
}
}
}
}
}