zhbmv function
void
zhbmv()
Implementation
void zhbmv(
final String UPLO,
final int N,
final int K,
final Complex ALPHA,
final Matrix<Complex> A_,
final int LDA,
final Array<Complex> X_,
final int INCX,
final Complex BETA,
final Array<Complex> Y_,
final int INCY,
) {
final A = A_.having(ld: LDA);
final X = X_.having();
final Y = Y_.having();
Complex TEMP1, TEMP2;
int I, INFO, IX, IY, J, JX, JY, KPLUS1, KX, KY, L;
// Test the input parameters.
INFO = 0;
if (!lsame(UPLO, 'U') && !lsame(UPLO, 'L')) {
INFO = 1;
} else if (N < 0) {
INFO = 2;
} else if (K < 0) {
INFO = 3;
} else if (LDA < (K + 1)) {
INFO = 6;
} else if (INCX == 0) {
INFO = 8;
} else if (INCY == 0) {
INFO = 11;
}
if (INFO != 0) {
xerbla('ZHBMV', INFO);
return;
}
// Quick return if possible.
if ((N == 0) || ((ALPHA == Complex.zero) && (BETA == Complex.one))) return;
// Set up the start points in X and Y.
if (INCX > 0) {
KX = 1;
} else {
KX = 1 - (N - 1) * INCX;
}
if (INCY > 0) {
KY = 1;
} else {
KY = 1 - (N - 1) * INCY;
}
// Start the operations. In this version the elements of the array A
// are accessed sequentially with one pass through A.
// First form y := beta*y.
if (BETA != Complex.one) {
if (INCY == 1) {
if (BETA == Complex.zero) {
for (I = 1; I <= N; I++) {
Y[I] = Complex.zero;
}
} else {
for (I = 1; I <= N; I++) {
Y[I] = BETA * Y[I];
}
}
} else {
IY = KY;
if (BETA == Complex.zero) {
for (I = 1; I <= N; I++) {
Y[IY] = Complex.zero;
IY += INCY;
}
} else {
for (I = 1; I <= N; I++) {
Y[IY] = BETA * Y[IY];
IY += INCY;
}
}
}
}
if (ALPHA == Complex.zero) return;
if (lsame(UPLO, 'U')) {
// Form y when upper triangle of A is stored.
KPLUS1 = K + 1;
if ((INCX == 1) && (INCY == 1)) {
for (J = 1; J <= N; J++) {
TEMP1 = ALPHA * X[J];
TEMP2 = Complex.zero;
L = KPLUS1 - J;
for (I = max(1, J - K); I <= J - 1; I++) {
Y[I] += TEMP1 * A[L + I][J];
TEMP2 += A[L + I][J].conjugate() * X[I];
}
Y[J] += TEMP1 * A[KPLUS1][J].real.toComplex() + ALPHA * TEMP2;
}
} else {
JX = KX;
JY = KY;
for (J = 1; J <= N; J++) {
TEMP1 = ALPHA * X[JX];
TEMP2 = Complex.zero;
IX = KX;
IY = KY;
L = KPLUS1 - J;
for (I = max(1, J - K); I <= J - 1; I++) {
Y[IY] += TEMP1 * A[L + I][J];
TEMP2 += A[L + I][J].conjugate() * X[IX];
IX += INCX;
IY += INCY;
}
Y[JY] += TEMP1 * A[KPLUS1][J].real.toComplex() + ALPHA * TEMP2;
JX += INCX;
JY += INCY;
if (J > K) {
KX += INCX;
KY += INCY;
}
}
}
} else {
// Form y when lower triangle of A is stored.
if ((INCX == 1) && (INCY == 1)) {
for (J = 1; J <= N; J++) {
TEMP1 = ALPHA * X[J];
TEMP2 = Complex.zero;
Y[J] += TEMP1 * A[1][J].real.toComplex();
L = 1 - J;
for (I = J + 1; I <= min(N, J + K); I++) {
Y[I] += TEMP1 * A[L + I][J];
TEMP2 += A[L + I][J].conjugate() * X[I];
}
Y[J] += ALPHA * TEMP2;
}
} else {
JX = KX;
JY = KY;
for (J = 1; J <= N; J++) {
TEMP1 = ALPHA * X[JX];
TEMP2 = Complex.zero;
Y[JY] += TEMP1 * A[1][J].real.toComplex();
L = 1 - J;
IX = JX;
IY = JY;
for (I = J + 1; I <= min(N, J + K); I++) {
IX += INCX;
IY += INCY;
Y[IY] += TEMP1 * A[L + I][J];
TEMP2 += A[L + I][J].conjugate() * X[IX];
}
Y[JY] += ALPHA * TEMP2;
JX += INCX;
JY += INCY;
}
}
}
}