dtbmv function
void
dtbmv()
Implementation
void dtbmv(
final String UPLO,
final String TRANS,
final String DIAG,
final int N,
final int K,
final Matrix<double> A_,
final int LDA,
final Array<double> X_,
final int INCX,
) {
final A = A_.having(ld: LDA);
final X = X_.having();
const ZERO = 0.0;
var INFO = 0;
if (!lsame(UPLO, 'U') && !lsame(UPLO, 'L')) {
INFO = 1;
} else if (!lsame(TRANS, 'N') && !lsame(TRANS, 'T') && !lsame(TRANS, 'C')) {
INFO = 2;
} else if (!lsame(DIAG, 'U') && !lsame(DIAG, 'N')) {
INFO = 3;
} else if (N < 0) {
INFO = 4;
} else if (K < 0) {
INFO = 5;
} else if (LDA < (K + 1)) {
INFO = 7;
} else if (INCX == 0) {
INFO = 9;
}
if (INFO != 0) {
xerbla('DTBMV', INFO);
return;
}
// Quick return if possible.
if (N == 0) return;
final NOUNIT = lsame(DIAG, 'N');
// Set up the start point in X if the increment is not unity. This
// will be ( N - 1 )*INCX too small for descending loops.
var KX = switch (INCX) {
<= 0 => 1 - (N - 1) * INCX,
1 => 0,
_ => 1,
};
// Start the operations. In this version the elements of A are
// accessed sequentially with one pass through A.
if (lsame(TRANS, 'N')) {
// Form x := A*x.
if (lsame(UPLO, 'U')) {
final KPLUS1 = K + 1;
if (INCX == 1) {
for (var J = 1; J <= N; J++) {
if (X[J] != ZERO) {
final TEMP = X[J];
final L = KPLUS1 - J;
for (var I = max(1, J - K); I <= J - 1; I++) {
X[I] += TEMP * A[L + I][J];
}
if (NOUNIT) X[J] *= A[KPLUS1][J];
}
}
} else {
var JX = KX;
for (var J = 1; J <= N; J++) {
if (X[JX] != ZERO) {
final TEMP = X[JX];
var IX = KX;
final L = KPLUS1 - J;
for (var I = max(1, J - K); I <= J - 1; I++) {
X[IX] += TEMP * A[L + I][J];
IX += INCX;
}
if (NOUNIT) X[JX] *= A[KPLUS1][J];
}
JX += INCX;
if (J > K) KX += INCX;
}
}
} else {
if (INCX == 1) {
for (var J = N; J >= 1; J--) {
if (X[J] != ZERO) {
final TEMP = X[J];
final L = 1 - J;
for (var I = min(N, J + K); I >= J + 1; I--) {
X[I] += TEMP * A[L + I][J];
}
if (NOUNIT) X[J] *= A[1][J];
}
}
} else {
KX += (N - 1) * INCX;
var JX = KX;
for (var J = N; J >= 1; J--) {
if (X[JX] != ZERO) {
final TEMP = X[JX];
var IX = KX;
final L = 1 - J;
for (var I = min(N, J + K); I >= J + 1; I--) {
X[IX] += TEMP * A[L + I][J];
IX -= INCX;
}
if (NOUNIT) X[JX] *= A[1][J];
}
JX -= INCX;
if ((N - J) >= K) KX -= INCX;
}
}
}
} else {
// Form x := A**T*x.
if (lsame(UPLO, 'U')) {
final KPLUS1 = K + 1;
if (INCX == 1) {
for (var J = N; J >= 1; J--) {
var TEMP = X[J];
final L = KPLUS1 - J;
if (NOUNIT) TEMP *= A[KPLUS1][J];
for (var I = J - 1; I >= max(1, J - K); I--) {
TEMP += A[L + I][J] * X[I];
}
X[J] = TEMP;
}
} else {
KX += (N - 1) * INCX;
var JX = KX;
for (var J = N; J >= 1; J--) {
var TEMP = X[JX];
KX -= INCX;
var IX = KX;
final L = KPLUS1 - J;
if (NOUNIT) TEMP *= A[KPLUS1][J];
for (var I = J - 1; I >= max(1, J - K); I--) {
TEMP += A[L + I][J] * X[IX];
IX -= INCX;
}
X[JX] = TEMP;
JX -= INCX;
}
}
} else {
if (INCX == 1) {
for (var J = 1; J <= N; J++) {
var TEMP = X[J];
final L = 1 - J;
if (NOUNIT) TEMP *= A[1][J];
for (var I = J + 1; I <= min(N, J + K); I++) {
TEMP += A[L + I][J] * X[I];
}
X[J] = TEMP;
}
} else {
var JX = KX;
for (var J = 1; J <= N; J++) {
var TEMP = X[JX];
KX += INCX;
var IX = KX;
final L = 1 - J;
if (NOUNIT) TEMP *= A[1][J];
for (var I = J + 1; I <= min(N, J + K); I++) {
TEMP += A[L + I][J] * X[IX];
IX += INCX;
}
X[JX] = TEMP;
JX += INCX;
}
}
}
}
}