dspr2 function
void
dspr2()
Implementation
void dspr2(
final String UPLO,
final int N,
final double ALPHA,
final Array<double> X_,
final int INCX,
final Array<double> Y_,
final int INCY,
final Array<double> AP_,
) {
final X = X_.having();
final Y = Y_.having();
final AP = AP_.having();
const ZERO = 0.0;
// Test the input parameters.
var INFO = 0;
if (!lsame(UPLO, 'U') && !lsame(UPLO, 'L')) {
INFO = 1;
} else if (N < 0) {
INFO = 2;
} else if (INCX == 0) {
INFO = 5;
} else if (INCY == 0) {
INFO = 7;
}
if (INFO != 0) {
xerbla('DSPR2', INFO);
return;
}
// Quick return if possible.
if ((N == 0) || (ALPHA == ZERO)) return;
// Set up the start points in X and Y if the increments are not both
// unity.
int JX = 0, JY = 0, KX = 0, KY = 0;
if ((INCX != 1) || (INCY != 1)) {
KX = INCX > 0 ? 1 : 1 - (N - 1) * INCX;
KY = INCY > 0 ? 1 : 1 - (N - 1) * INCY;
JX = KX;
JY = KY;
}
// Start the operations. In this version the elements of the array AP
// are accessed sequentially with one pass through AP.
var KK = 1;
if (lsame(UPLO, 'U')) {
// Form A when upper triangle is stored in AP.
if ((INCX == 1) && (INCY == 1)) {
for (var J = 1; J <= N; J++) {
if ((X[J] != ZERO) || (Y[J] != ZERO)) {
final TEMP1 = ALPHA * Y[J];
final TEMP2 = ALPHA * X[J];
for (var I = 1, K = KK; I <= J; I++, K++) {
AP[K] += X[I] * TEMP1 + Y[I] * TEMP2;
}
}
KK += J;
}
} else {
for (var J = 1; J <= N; J++) {
if ((X[JX] != ZERO) || (Y[JY] != ZERO)) {
final TEMP1 = ALPHA * Y[JY];
final TEMP2 = ALPHA * X[JX];
var IX = KX, IY = KY;
for (var K = KK; K <= KK + J - 1; K++) {
AP[K] += X[IX] * TEMP1 + Y[IY] * TEMP2;
IX += INCX;
IY += INCY;
}
}
JX += INCX;
JY += INCY;
KK += J;
}
}
} else {
// Form A when lower triangle is stored in AP.
if ((INCX == 1) && (INCY == 1)) {
for (var J = 1; J <= N; J++) {
if ((X[J] != ZERO) || (Y[J] != ZERO)) {
final TEMP1 = ALPHA * Y[J];
final TEMP2 = ALPHA * X[J];
for (var I = J, K = KK; I <= N; I++, K++) {
AP[K] += X[I] * TEMP1 + Y[I] * TEMP2;
}
}
KK += N - J + 1;
}
} else {
for (var J = 1; J <= N; J++) {
if ((X[JX] != ZERO) || (Y[JY] != ZERO)) {
final TEMP1 = ALPHA * Y[JY];
final TEMP2 = ALPHA * X[JX];
var IX = JX, IY = JY;
for (var K = KK; K <= KK + N - J; K++) {
AP[K] += X[IX] * TEMP1 + Y[IY] * TEMP2;
IX += INCX;
IY += INCY;
}
}
JX += INCX;
JY += INCY;
KK += N - J + 1;
}
}
}
}