sinh function
Compute the hyperbolic sine of a number.
Implementation
double sinh(double x) {
if (x != x) {
return x;
}
var negate = false;
// sinh[z] = (exp(z) - exp(-z) / 2
// for values of z larger than about 20,
// exp(-z) can be ignored in comparison with exp(z)
if (x > 20) {
if (x >= logMaxValue) {
// Avoid overflow (MATH-905).
final t = exp(0.5 * x);
return (0.5 * t) * t;
} else {
return 0.5 * exp(x);
}
} else if (x < -20) {
if (x <= -logMaxValue) {
// Avoid overflow (MATH-905).
final t = exp(-0.5 * x);
return (-0.5 * t) * t;
} else {
return -0.5 * exp(-x);
}
}
if (x == 0) {
return x;
}
if (x < 0.0) {
x = -x;
negate = true;
}
double result;
if (x > 0.25) {
final hiPrec = List.filled(2, 0.0);
exp(x, 0.0, hiPrec);
var ya = hiPrec[0] + hiPrec[1];
var yb = -(ya - hiPrec[0] - hiPrec[1]);
var temp = ya * hex40000000;
final yaa = ya + temp - temp;
final yab = ya - yaa;
// recip = 1/y
final recip = 1.0 / ya;
temp = recip * hex40000000;
var recipa = recip + temp - temp;
var recipb = recip - recipa;
// Correct for rounding in division
recipb +=
(1.0 - yaa * recipa - yaa * recipb - yab * recipa - yab * recipb) *
recip;
// Account for yb
recipb += -yb * recip * recip;
recipa = -recipa;
recipb = -recipb;
// y = y + 1/y
temp = ya + recipa;
yb += -(temp - ya - recipa);
ya = temp;
temp = ya + recipb;
yb += -(temp - ya - recipb);
ya = temp;
result = ya + yb;
result *= 0.5;
} else {
final hiPrec = List.filled(2, 0.0);
expm1(x, hiPrec);
var ya = hiPrec[0] + hiPrec[1];
var yb = -(ya - hiPrec[0] - hiPrec[1]);
/* Compute expm1(-x) = -expm1(x) / (expm1(x) + 1) */
final denom = 1.0 + ya;
final denomr = 1.0 / denom;
final denomb = -(denom - 1.0 - ya) + yb;
final ratio = ya * denomr;
var temp = ratio * hex40000000;
final ra = ratio + temp - temp;
var rb = ratio - ra;
temp = denom * hex40000000;
final za = denom + temp - temp;
final zb = denom - za;
rb += (ya - za * ra - za * rb - zb * ra - zb * rb) * denomr;
// Adjust for yb
rb += yb * denomr; // numerator
rb += -ya * denomb * denomr * denomr; // denominator
// y = y - 1/y
temp = ya + ra;
yb += -(temp - ya - ra);
ya = temp;
temp = ya + rb;
yb += -(temp - ya - rb);
ya = temp;
result = ya + yb;
result *= 0.5;
}
if (negate) {
result = -result;
}
return result;
}