modularSquareRootPrime static method
Implementation
static BigInt modularSquareRootPrime(BigInt a, BigInt p) {
assert(BigInt.zero <= a && a < p);
assert(p > BigInt.one);
if (a == BigInt.zero) {
return BigInt.zero;
}
if (p == BigInt.two) {
return a;
}
final jacobiSymbol = jacobi(a, p);
if (jacobiSymbol == BigInt.from(-1)) {
throw SquareRootError("$a has no square root modulo $p");
}
if (p % BigInt.from(4) == BigInt.from(3)) {
return a.modPow((p + BigInt.one) ~/ BigInt.from(4), p);
}
if (p % BigInt.from(8) == BigInt.from(5)) {
final d = a.modPow((p - BigInt.one) ~/ BigInt.from(4), p);
if (d == BigInt.one) {
return a.modPow((p + BigInt.from(3)) ~/ BigInt.from(8), p);
}
assert(d == p - BigInt.one);
return (BigInt.from(2) *
a *
(BigInt.from(4) * a)
.modPow((p - BigInt.from(5)) ~/ BigInt.from(8), p)) %
p;
}
for (BigInt b = BigInt.from(2); b < p; b += BigInt.one) {
if (jacobi(b * b - BigInt.from(4) * a, p) == BigInt.from(-1)) {
final quadraticForm = [a, -b, BigInt.one];
final result = polynomialExponentiationMod([BigInt.zero, BigInt.one],
(p + BigInt.one) ~/ BigInt.from(2), quadraticForm, p);
if (result[1] != BigInt.zero) {
throw const SquareRootError("p is not prime");
}
return result[0];
}
}
throw MessageException("No suitable 'b' found.");
}