dataInputConfig property
Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form. The data inputs are InputConfig$Framework specific.
-
TensorFlow
: You must specify the name and shape (NHWC format) of the expected data inputs using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.-
Examples for one input:
-
If using the console,
{"input":[1,1024,1024,3]}
-
If using the CLI,
{\"input\":[1,1024,1024,3]}
-
If using the console,
-
Examples for two inputs:
-
If using the console,
{"data1": [1,28,28,1], "data2":[1,28,28,1]}
-
If using the CLI,
{\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}
-
If using the console,
-
Examples for one input:
-
KERAS
: You must specify the name and shape (NCHW format) of expected data inputs using a dictionary format for your trained model. Note that while Keras model artifacts should be uploaded in NHWC (channel-last) format,DataInputConfig
should be specified in NCHW (channel-first) format. The dictionary formats required for the console and CLI are different.-
Examples for one input:
-
If using the console,
{"input_1":[1,3,224,224]}
-
If using the CLI,
{\"input_1\":[1,3,224,224]}
-
If using the console,
-
Examples for two inputs:
-
If using the console,
{"input_1": [1,3,224,224], "input_2":[1,3,224,224]}
-
If using the CLI,
{\"input_1\": [1,3,224,224], \"input_2\":[1,3,224,224]}
-
If using the console,
-
Examples for one input:
-
MXNET/ONNX/DARKNET
: You must specify the name and shape (NCHW format) of the expected data inputs in order using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.-
Examples for one input:
-
If using the console,
{"data":[1,3,1024,1024]}
-
If using the CLI,
{\"data\":[1,3,1024,1024]}
-
If using the console,
-
Examples for two inputs:
-
If using the console,
{"var1": [1,1,28,28], "var2":[1,1,28,28]}
-
If using the CLI,
{\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}
-
If using the console,
-
Examples for one input:
-
PyTorch
: You can either specify the name and shape (NCHW format) of expected data inputs in order using a dictionary format for your trained model or you can specify the shape only using a list format. The dictionary formats required for the console and CLI are different. The list formats for the console and CLI are the same.-
Examples for one input in dictionary format:
-
If using the console,
{"input0":[1,3,224,224]}
-
If using the CLI,
{\"input0\":[1,3,224,224]}
-
If using the console,
-
Example for one input in list format:
[[1,3,224,224]]
-
Examples for two inputs in dictionary format:
-
If using the console,
{"input0":[1,3,224,224], "input1":[1,3,224,224]}
-
If using the CLI,
{\"input0\":[1,3,224,224], \"input1\":[1,3,224,224]}
-
If using the console,
-
Example for two inputs in list format:
[[1,3,224,224], [1,3,224,224]]
-
Examples for one input in dictionary format:
-
XGBOOST
: input data name and shape are not needed.
DataInputConfig
supports the following parameters for
CoreML
OutputConfig$TargetDevice (ML Model format):
-
shape
: Input shape, for example{"input_1": {"shape": [1,224,224,3]}}
. In addition to static input shapes, CoreML converter supports Flexible input shapes:-
Range Dimension. You can use the Range Dimension feature if you know the
input shape will be within some specific interval in that dimension, for
example:
{"input_1": {"shape": ["1..10", 224, 224, 3]}}
-
Enumerated shapes. Sometimes, the models are trained to work only on a
select set of inputs. You can enumerate all supported input shapes, for
example:
{"input_1": {"shape": [[1, 224, 224, 3], [1, 160, 160, 3]]}}
-
Range Dimension. You can use the Range Dimension feature if you know the
input shape will be within some specific interval in that dimension, for
example:
-
default_shape
: Default input shape. You can set a default shape during conversion for both Range Dimension and Enumerated Shapes. For example{"input_1": {"shape": ["1..10", 224, 224, 3], "default_shape": [1, 224, 224, 3]}}
-
type
: Input type. Allowed values:Image
andTensor
. By default, the converter generates an ML Model with inputs of type Tensor (MultiArray). User can set input type to be Image. Image input type requires additional input parameters such asbias
andscale
. -
bias
: If the input type is an Image, you need to provide the bias vector. -
scale
: If the input type is an Image, you need to provide a scale factor.
ClassifierConfig
parameters can be specified using
OutputConfig$CompilerOptions. CoreML converter supports Tensorflow
and PyTorch models. CoreML conversion examples:
-
Tensor type input:
-
"DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3]}}
-
-
Tensor type input without input name (PyTorch):
-
"DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224]}]
-
-
Image type input:
-
"DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}}
-
"CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}
-
-
Image type input without input name (PyTorch):
-
"DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}]
-
"CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}
-
Implementation
final String dataInputConfig;