trainingParameters property
A list of the training parameters in the MLModel
. The list is
implemented as a map of key-value pairs.
The following is the current set of training parameters:
-
sgd.maxMLModelSizeInBytes
- The maximum allowed size of the model. Depending on the input data, the size of the model might affect its performance.The value is an integer that ranges from
100000
to2147483648
. The default value is33554432
. -
sgd.maxPasses
- The number of times that the training process traverses the observations to build theMLModel
. The value is an integer that ranges from1
to10000
. The default value is10
. -
sgd.shuffleType
- Whether Amazon ML shuffles the training data. Shuffling data improves a model's ability to find the optimal solution for a variety of data types. The valid values areauto
andnone
. The default value isnone
. We strongly recommend that you shuffle your data. -
sgd.l1RegularizationAmount
- The coefficient regularization L1 norm. It controls overfitting the data by penalizing large coefficients. This tends to drive coefficients to zero, resulting in a sparse feature set. If you use this parameter, start by specifying a small value, such as1.0E-08
.The value is a double that ranges from
0
toMAX_DOUBLE
. The default is to not use L1 normalization. This parameter can't be used whenL2
is specified. Use this parameter sparingly. -
sgd.l2RegularizationAmount
- The coefficient regularization L2 norm. It controls overfitting the data by penalizing large coefficients. This tends to drive coefficients to small, nonzero values. If you use this parameter, start by specifying a small value, such as1.0E-08
.The value is a double that ranges from
0
toMAX_DOUBLE
. The default is to not use L2 normalization. This parameter can't be used whenL1
is specified. Use this parameter sparingly.
Implementation
final Map<String, String>? trainingParameters;