updateMLTransform method
Updates an existing machine learning transform. Call this operation to tune the algorithm parameters to achieve better results.
After calling this operation, you can call the
StartMLEvaluationTaskRun
operation to assess how well your
new parameters achieved your goals (such as improving the quality of your
machine learning transform, or making it more cost-effective).
May throw EntityNotFoundException. May throw InvalidInputException. May throw OperationTimeoutException. May throw InternalServiceException. May throw AccessDeniedException.
Parameter transformId
:
A unique identifier that was generated when the transform was created.
Parameter description
:
A description of the transform. The default is an empty string.
Parameter glueVersion
:
This value determines which version of AWS Glue this machine learning
transform is compatible with. Glue 1.0 is recommended for most customers.
If the value is not set, the Glue compatibility defaults to Glue 0.9. For
more information, see AWS
Glue Versions in the developer guide.
Parameter maxCapacity
:
The number of AWS Glue data processing units (DPUs) that are allocated to
task runs for this transform. You can allocate from 2 to 100 DPUs; the
default is 10. A DPU is a relative measure of processing power that
consists of 4 vCPUs of compute capacity and 16 GB of memory. For more
information, see the AWS
Glue pricing page.
When the WorkerType
field is set to a value other than
Standard
, the MaxCapacity
field is set
automatically and becomes read-only.
Parameter maxRetries
:
The maximum number of times to retry a task for this transform after a
task run fails.
Parameter name
:
The unique name that you gave the transform when you created it.
Parameter numberOfWorkers
:
The number of workers of a defined workerType
that are
allocated when this task runs.
Parameter parameters
:
The configuration parameters that are specific to the transform type
(algorithm) used. Conditionally dependent on the transform type.
Parameter role
:
The name or Amazon Resource Name (ARN) of the IAM role with the required
permissions.
Parameter timeout
:
The timeout for a task run for this transform in minutes. This is the
maximum time that a task run for this transform can consume resources
before it is terminated and enters TIMEOUT
status. The
default is 2,880 minutes (48 hours).
Parameter workerType
:
The type of predefined worker that is allocated when this task runs.
Accepts a value of Standard, G.1X, or G.2X.
-
For the
Standard
worker type, each worker provides 4 vCPU, 16 GB of memory and a 50GB disk, and 2 executors per worker. -
For the
G.1X
worker type, each worker provides 4 vCPU, 16 GB of memory and a 64GB disk, and 1 executor per worker. -
For the
G.2X
worker type, each worker provides 8 vCPU, 32 GB of memory and a 128GB disk, and 1 executor per worker.
Implementation
Future<UpdateMLTransformResponse> updateMLTransform({
required String transformId,
String? description,
String? glueVersion,
double? maxCapacity,
int? maxRetries,
String? name,
int? numberOfWorkers,
TransformParameters? parameters,
String? role,
int? timeout,
WorkerType? workerType,
}) async {
ArgumentError.checkNotNull(transformId, 'transformId');
_s.validateStringLength(
'transformId',
transformId,
1,
255,
isRequired: true,
);
_s.validateStringLength(
'description',
description,
0,
2048,
);
_s.validateStringLength(
'glueVersion',
glueVersion,
1,
255,
);
_s.validateStringLength(
'name',
name,
1,
255,
);
_s.validateNumRange(
'timeout',
timeout,
1,
1152921504606846976,
);
final headers = <String, String>{
'Content-Type': 'application/x-amz-json-1.1',
'X-Amz-Target': 'AWSGlue.UpdateMLTransform'
};
final jsonResponse = await _protocol.send(
method: 'POST',
requestUri: '/',
exceptionFnMap: _exceptionFns,
// TODO queryParams
headers: headers,
payload: {
'TransformId': transformId,
if (description != null) 'Description': description,
if (glueVersion != null) 'GlueVersion': glueVersion,
if (maxCapacity != null) 'MaxCapacity': maxCapacity,
if (maxRetries != null) 'MaxRetries': maxRetries,
if (name != null) 'Name': name,
if (numberOfWorkers != null) 'NumberOfWorkers': numberOfWorkers,
if (parameters != null) 'Parameters': parameters,
if (role != null) 'Role': role,
if (timeout != null) 'Timeout': timeout,
if (workerType != null) 'WorkerType': workerType.toValue(),
},
);
return UpdateMLTransformResponse.fromJson(jsonResponse.body);
}