distance method
Calculates distance with Vincenty algorithm.
Accuracy is about 0.5mm More on Wikipedia
Implementation
@override
double distance(final LatLng p1, final LatLng p2) {
var a = equatorRadius,
b = polarRadius,
f = flattening; // WGS-84 ellipsoid params
var l = p2.longitudeInRad - p1.longitudeInRad;
var u1 = math.atan((1 - f) * math.tan(p1.latitudeInRad));
var u2 = math.atan((1 - f) * math.tan(p2.latitudeInRad));
var sinU1 = math.sin(u1), cosU1 = math.cos(u1);
var sinU2 = math.sin(u2), cosU2 = math.cos(u2);
double sinLambda,
cosLambda,
sinSigma,
cosSigma,
sigma,
sinAlpha,
cosSqAlpha,
cos2SigmaM;
double lambda = l, lambdaP;
var maxIterations = 200;
do {
sinLambda = math.sin(lambda);
cosLambda = math.cos(lambda);
sinSigma = math.sqrt((cosU2 * sinLambda) * (cosU2 * sinLambda) +
(cosU1 * sinU2 - sinU1 * cosU2 * cosLambda) *
(cosU1 * sinU2 - sinU1 * cosU2 * cosLambda));
if (sinSigma == 0) {
return 0.0; // co-incident points
}
cosSigma = sinU1 * sinU2 + cosU1 * cosU2 * cosLambda;
sigma = math.atan2(sinSigma, cosSigma);
sinAlpha = cosU1 * cosU2 * sinLambda / sinSigma;
cosSqAlpha = 1 - sinAlpha * sinAlpha;
cos2SigmaM = cosSigma - 2 * sinU1 * sinU2 / cosSqAlpha;
if (cos2SigmaM.isNaN) {
cos2SigmaM = 0.0; // equatorial line: cosSqAlpha=0 (ยง6)
}
var C = f / 16 * cosSqAlpha * (4 + f * (4 - 3 * cosSqAlpha));
lambdaP = lambda;
lambda = l +
(1 - C) *
f *
sinAlpha *
(sigma +
C *
sinSigma *
(cos2SigmaM +
C * cosSigma * (-1 + 2 * cos2SigmaM * cos2SigmaM)));
} while ((lambda - lambdaP).abs() > 1e-12 && --maxIterations > 0);
if (maxIterations == 0) {
throw StateError('Distance calculation faild to converge!');
}
var uSq = cosSqAlpha * (a * a - b * b) / (b * b);
var A = 1 + uSq / 16384 * (4096 + uSq * (-768 + uSq * (320 - 175 * uSq)));
var B = uSq / 1024 * (256 + uSq * (-128 + uSq * (74 - 47 * uSq)));
var deltaSigma = B *
sinSigma *
(cos2SigmaM +
B /
4 *
(cosSigma * (-1 + 2 * cos2SigmaM * cos2SigmaM) -
B /
6 *
cos2SigmaM *
(-3 + 4 * sinSigma * sinSigma) *
(-3 + 4 * cos2SigmaM * cos2SigmaM)));
var dist = b * A * (sigma - deltaSigma);
return dist;
}