
Clean Framework
Clean architecture library inspired by Bob Martin’s guidelines.

• Layered architecture

• Way to structure our apps

• Each layer is testable

• Each layer has one simple job

• The framework is evolving and will get updated as needed
when needed

Entity UseCase

UI

Gateway

Service/firebase/graphql

External
Interface

Presenter ViewModel

Architecture Layers

Output

Input

Request

Response

Additional Resources

CFRouterScope

ThemeProvider

Logger

Connectivity

Feature

FeatureProvider FeatureMapper

FeatureState

CFRouteInformationParser

CFRouterDelegate

FeatureTester

RestExternalInterface

RestGateWay

GraphQLService

LocalRedis

FirebaseServiceFirebaseGateway

GraphQLGateway

RedisGateway

AppProvidersContainer

ProvidersContext

Example of Implementation

Entity

UseCase

Presenter1

View1

UI1

Presenter2

View2

UI2

FirebaseExternalInterface

FirebaseClient

FirebaseGateway FirebaseRequest

FirebaseResponse

External Interface
The external interface provides a medium between a feature use
case and an external dependency such as firebase. It receives a
request from a gateway. Then calls the external dependency using
the data in the Gateway request. Using Either<Left, Right> it
returns either a Right if it was successful or a Left if it was
unsuccessful. The goal is to wrap/hide any data that comes from
the outside of the app to protect the app from changes. For
example a plugin or service could change and only the external
interface needs updated. The external interface might be used by
more than one use case. One use case could use multiple
external interfaces.

Gateway
The gateway is an intermediary between the external interface
and the use case. It builds the request for the external
interface. It reacts to success vs failure. It support synchronous
and asynchronous call. Synchronous is supported by
DirectGateway using onSuccess. Asynchronous is supported by
the WatcherGateway with onYield. A use case may use many
gateways. The gateway shields the use case from changes in
the external systems. The external system can change but the
input/output will typically stay the same.

Use case
The domain layer of the app
The use case contains 100% of the business logic of the feature. If the use case tests
pass all of the requirements are met. They are independent of the UI of the app, they
could run as a flutter app or even a console app. Entities only interact with UseCases.

The flow of data between the use case and components from the outer layers is
controlled via Inputs and Outputs.

All data flowing from an external dependency comes through an Input, and all data
leaving the use case

to an external dependency goes through an output. This works in the same way for
data used on the UI, where the Output is processed by Presenters.

Entity
Any data that needs to be preserved to enable all the business logic flows,
should exist within the Entity class. Any state data should be stored in the
Entity and modified by the UseCase. Entities can also be enforcing Domain
rules.

A feature that has a form for user data would send the data through UI events
to the UseCase, which in turn sets the data into the Entity fields. The UseCase
can also be doing this when querying data from any External Interface.

 

Presenter
Translates the data of any Output from an UseCase and creates ViewModels, which
are "snapshots" of the Entity that can be used by any UI component that wants to
show the business logic data.

Presenters are Stateless Widgets with a build method that already shares the
generated ViewModel. Everytime the Entity changes and could produce a different
Output, the build will be invoked with such changes.

This component serves as an intermediary between user actions and the UseCase
events. The UI uses callbacks that the Presenter links with methods from the
UseCase.

Each feature has multiple Presenters, one Presenter works with one specific
Output. There could exist multiple ViewModels per Output as well.

UI
This component takes a ViewModel and combines the data with Flutter UI code
to create the screens or widgets where the User can see the feature data and
interact with it.

A feature uses UI components as an entry point, being the first components to
be built after a navigation event happens. They should be building the Presenters
and receiving the updates on ViewModels, as well as defining the callbacks that
would be actions on the Presenter (and UseCase by consequence).

Since ViewModels are just PODOs, these are useful for testing, any developer
can mock ViewModels and complete UI implementations without the need to
code UseCases.

