Objective:
- Create a Circuit with a Power Unit and an LED
- Call execute method of circuit to power the led

Classes:
- LED
- Switch
- Resistor
- Power Unit
- Circuit
- Parallel Connection
- Series Connection

Note: Red marked components are less priority for release version 1.0.0

Common Properties:
- In this ecosystem almost everything is a component.
- A component can hold reference to one or multiple components.

- Each component has at least 2 pins/legs (signed or unsigned i.e:
positive, ground, neutral).

- Legs/Pins are not components.

- There will be no connectors. Components will be connected to each
other via reference.

- Each component may/may not have a unique id.

Individual properties of different classes:

Component:

- It's an abstract class / interface. Parent class for all
components.

Properties:

- Id [Unique id] (optional)



- Name/Tag [String] (Optional)

- Child [List of Components] (optional)

Circuit:

A Circuit unit can hold one/more components.

- It has an execute method which can issue change of the states of
the components. There might be a validate method which goes
through all the components and is called by execute().

- If there are any connections that might cause the circuit to
malfunction, the execute method throws an error. For example the
positive and negative pins of a power unit might be connected
without any other component in between. This will cause the
execute() function to throw an error.

- On calling execute, the circuit will find all Power units and
give them a command to emit a positive value from the positive
pin and negative value from the negative pin.

- Each component can listen to these streams sent by the power
source. The component can also emit the received stream to any
listeners listening to it.

- If both pins of a component receive the values emitted from the
positive and negative pins of the same power source, it can be
defined as connected. There can be a status/Rx variable named
connected which will be updated every time a component receives a
stream. It can be listened to and/or checked by some public
method to know the current state of a component.



