bl Toul

PRIVACY AT THE EDGE

Flutter App Developer
Guide

Platforms: Android, iOS

SDK Platforms: Android, Android TV & Fire0OS
OS versions: Android 5.0+
Programming Languages : Java

SDK Platforms: iPhone & iPad
OS versions: i0S 9.0+ Applications
Programming Languages : Objective C + Swift

SDK version: 1.0.0-b0

SDK Download Link: https://pub.dev/packages/blotoutfluttersdk



https://pub.dev/packages/blotoutfluttersdk

Android App Developer Guide
INTRODUCTION
Pre-Requisites
Setup and download
Add Blotout's analytics SDK to your project
Add the required Gradle Dependency and libraries
Using Android Studio 3.5+ and building Apps for android 5.0+
Setup API key and configuration
Updating API key and configuration
Configure Logging
EVENTs CONFIGURATION
Funnel Events
Segment Events
Non-Timed Events
Timed Events
Location Events
To turn ON the sensor
To turn OFF the sensor
REPUTATION AS A SERVICE (RaaS)
Device & Environment Reputation
END USER DATA CONFIGURATION
Turn OFF user data collection
Turn ON user data collection
Disable event data sync with server
Enable event data sync with servers
TROUBLESHOOTING
FAQ'S

O o N N N vyo obh b WWW=

T S W W U A WU U W W
B W W WMNNNQ@=" =20 0 v




INTRODUCTION

This document is created to help developers integrate Blotout's SDK easily with their android
Applications.

Blotout's SDK offers companies all of the analytics and remarketing tools they are accustomed to,
while offering best-in-class privacy preservation for the company’s users. Blotout's SDK is out of the
box compliant with GDPR, CCPA & COPPA. Blotout’'s SDK uses on-device, distributed edge
computing for Analytics, Messaging and Remarketing, all without using User Personal Data, Device
IDs or IP Addresses.

Pre-Requisites

IDE: Android Studio 3.5+, Xcode

SDK: Android SDK 21+, i0S 8.0+

In case Blotout’s SDK is already enabled, please refer to the release notes & upgrade guide to
perform upgrades based on the SDK'’s version's compatibility.

Setup and download

To download the android SDK, please create your account at https://<1P Container Domain>/signup
or login at https://<1P Container Domain>/login. Register a new android App with the on-screen
details or go directly to the “My Applications” section by clicking on your profile icon and then
selecting “My Applications”. Once you land on the “My Applications” page, check already registered
Apps or register a new App based on your requirements. All registered Apps will be listed on this
page with the Test Key and Prod Key. Based on your App environment, set the key and toggle the
switch between test and production as needed.

e Copy your API Key & replace “XXXXXXXXXXXXXXX" with your stage or production key.
a. Stage & Production key can be retrieved by login at https://<1P Container
Domain>/applications

Once all the above setup is done, click on the link to download the latest version of the SDK and
prepare for installation. It will download a zip file, extract the contents which will provide the
following content.

Release Notes and Upgrade Guide
Sample App

SDK Integration Document

SDK Library

Hown =


https://stage-apps.blotout.io/applications

a. iOS Library and Helper Classes
b. Android Library and Helper Classes
c. Blotout Analytics DART package

Create a Flutter Application (visit official link for more information)

Flutter create BlotoutFlutterSample // Replace "BlotoutFlutterSample" with you app name

Add Blotout’'s Analytics Dart Package to Flutter project

dependencies:

flutter:

sdk: flutter

# The following adds the Cupertino Icons font to your application.
blotoutfluttersdk: 20.0.10

Please check the latest version of Blotoutfluttersdk at:
https://pub.dev/packages/blotoutfluttersdk

Setup API key and configuration

To set up API keys for test and production mode, as described in the “Setup and download”
section, please get the test and production mode keys from the Blotout Dashboard.

Import BlotoutFlutterSDK Dart Package and use the below code to enable Keys and configure it.

import 'package:blotoutfluttersdk/blotoutfluttersdk.dart’;

BlotoutAnalyticsAPI.blotoutAnalyticsInstance.initBlotoutSDK("BlotoutSDKKey","EndPointUrl");


https://flutter.dev/docs/get-started/test-drive?tab=terminal
https://pub.dev/packages/blotoutfluttersdk
https://blotout.atlassian.net/wiki/spaces/BPV/pages/85327873/iOS+App+Developer+Guide

How to use BlotoutAnalytics Dart Package to send data to Server, refer sample code
below:

void getinstance() {
BlotoutAnalyticsAPI.blotoutAnalyticsInstance
.initBlotoutSDK(_blotoutToken, _endPointUrl)
.then((success) {
setState(() {
_resultMessage = 'Instance created with success!’,

void trackEvent() {
Map<String, String> properties = {
"Button Pressed": "A LogEvent button was pressed”
b
BlotoutAnalyticsAPI.blotoutAnalyticsInstance
JlogEvent('logEvent', properties);
setState(() {
_resultMessage = 'Event sent with success!’
n
}

void trackEventWithTime() {
Map<String, String> properties = {

"logEventWithTime": "A logEventWithTime button was pressed"
2
BlotoutAnalyticsAPI.blotoutAnalyticsInstance
logEventWithTime(logEventWithTime', properties, DateTime.now());
setState(() {
_resultMessage = 'Event sent with success!’,
»;
}

void trackStartEvent() {
Map<String, String> properties = {
"trackStartEvent": "A trackStartEvent button was pressed”
5
BlotoutAnalyticsAPl.blotoutAnalyticsInstance
.startTimedEvent(logTimeEvent', properties);

setState(() {
_resultMessage = 'Event sent with success!;
»;
}
void trackEndEvent() {

Map<String, String> properties = {
"trackEndEvent": "A trackEndEvent button was pressed"
h
BlotoutAnalyticsAPI.blotoutAnalyticsinstance
.endTimedEvent(logTimeEvent, properties);
setState(() {
_resultMessage = 'Event sent with success!;

»:



}

void trackPHIEvent() {
Map<String, String> properties = {
"Button Pressed": "A logPHIEvent button was pressed”
h
BlotoutAnalyticsAPI.blotoutAnalyticsinstance
.logPHIEvent(logPHIEvent', properties, DateTime.now());
setState(() {
_resultMessage = 'Event sent with success!;
1
}

void trackPIIEvent() {
Map<String, String> properties = {
"Button Pressed": "A logPIIEvent button was pressed"”
h
BlotoutAnalyticsAPI.blotoutAnalyticsInstance
.logPlIEvent(logPlIEvent, properties, DateTime.now());
setState(() {
_resultMessage = 'Event sent with success!’;
»;
}

void isDeviceCompromised() {
BlotoutAnalyticsAPI.blotoutAnalyticsInstance
.isDeviceCompromised()
.then((success) {
setState(() {
if (success) {
_resultMessage = 'Device Compromised!’;
}else {
_resultMessage = 'Device is not compromised!’

Additional Configuration for Native iOS and Android project

Add the required Gradle Dependency and libraries

Using Android Studio 3.5+ will automatically add the required library or frameworks into your
project based on uses and dependencies. Please feel free to verify from the list in case manual
operation is needed.



1. Gradle Library

implementation fileTree(dir: 'libs’, include: [*.jar',*.aarT)

implementation (‘com.birbit:android-priority-jobqueue:2.0.1")

implementation (‘com.squareup.retrofit2:retrofit:2.6.2")

implementation (‘org.greenrobot:eventbus:3.0.0")

implementation group: 'com.fasterxml.jackson.core', name: ‘jackson-databind', version: '2.9.8'
implementation 'com.squareup.retrofit2:converter-gson:2.3.0'

implementation group: 'com.squareup.retrofit2', name: 'converter-jackson’, version: '2.6.2'
implementation 'com.squareup.okhttp3:logging-interceptor:3.10.0'

implementation "org.jetbrains.kotlin:kotlin-stdlib-jdk7:1.3.72"

implementation 'com.android.installreferrer:installreferrer:2.1'

2. Android Manifest

<application>
<receiver android:name="com.blotout.events.BODayChangedBroadcastReceiver">
<intent-filter>
<action android:name="android.intent.action.DATE_.CHANGED"/>
<action android:name="android.intent.action. TIMEZONE_CHANGED"/>
<action android:name="android.intent.action. TIME_CHANGED"/>
</intent-filter>
</receiver>
<receiver
android:name="com.blotout.referrerapi.BOReferrerReceiver”
android:enabled="true"
android:exported="true">
<intent-filter>
<action android:name="com.android.vending.INSTALL_REFERRER" />
</intent-filter>
</receiver>
<service android:name="com.blotout.analytics.BOClosingService" android:stopWithTask="false">
</service>
</application>

<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />
<uses-permission android:name="android.permission.ACCESS_WIFI_STATE" />

Configure Logging

Blotout's SDK provides logging mechanisms. When turned on using the method mentioned here,
logs related to debug information will be available in the developer console.

void setSDKLogEnabled(bool sdkLogEnabled)



EVENTs CONFIGURATION

Blotout’s SDK provides various categories of events to be captured and processed. To understand in
a very simplistic manner, all the data which the Blotout SDK deals with, is some kind of event. Based
on the type, the processing and storage of the event may differ. Blotout's SDK treats User
Information as Pll data and never shares any information related to user details with any server as
clean text, it's always encrypted and data governance rules are applied. So any user related data or
event, which might contain user PIl (Personally Identifiable Information) is treated as a non-server
sync event in privacy mode and sent to the server in 1P mode with encryption and data governance
turned on.

Funnel Events

Funnel Events are a specific kind of event, which carry information related to event sequence
verification. In general cases it is used as navigation verification from one part of the application or
webpage to another part of application or webpage, but in practice it's not restricted to that and can
be used for any sequence verification.

Example:

1: Navigation Funnel Event: Home Page — Product Category Page — Product Details Page —
Purchase Page — Payment Page — Order Confirmation Page

2: In the Home Page of the application, the user can perform events from 1 to 100 in any order and |
want to verify the sequence as: Event 5 — Event 12 — Event 17 — Event

There can be various other forms in practice. By default, Funnel Events are enabled and in case you
want to disable the funnel events or switch the state, use the below property to do the action.

Find more details on Blotout dashboard about how to create Funnel Events and test results.

void setFunnelEventsEnabled(bool funnelEventsEnabled);



Segment Events

Segment events are another type of events which are generally used to categorise users and create
different sets of user buckets.

Example:

1: Age 30+ High Income Group: This segment tells us about users, who are above 30 years of age
and in a high income group as per global or country norms.

2: Age 30+ iPhone 11: This segment tells us about users, who are above 30 years of age and use an
iPhone 11 as an active device.

There can be n number of segments and are generally created dynamically based on need using
Blotout dashboard.

Segment Events are enabled by default, but can be toggled using the below property.

Find more details on Blotout’'s dashboard about how to create Segment Events and test results.

void setSegmentEventsEnabled(bool segmentEventsEnabled);

Non-Timed Events

Non-Timed events are generally events which are not time bound and do not contain duration
information. For example, the Home Page loaded is non-timed but Home page loading started and
home page loading ended, when grouped together, can be a timed event.

These events are categorized under two main categories in Blotout's SDK
1: SystemEvents:

System events are those which the Blotout SDK captures automatically like App Launch, App
Terminated etc. These kinds of non-timed events do not require any developer intervention except
enable or disable.

2: Developer Events:

Developer Events are those which developers codify in the Application code with the help of
Blotout's SDK and SDK sync with Blotout’s server, like “iPhone added to cart”.



void logEvent(String eventName, Map<String, dynamic> eventinfo);

void logEvent(String eventName, Map<String, dynamic> eventinfo, DateTime eventTime);

There are two methods mentioned above:

1st method logs the developer codified non-timed event considering current time as event
occurrence time. The 2nd method also logs the developer codified non-timed event considering
event time as passed under the happenedAt parameter. In the case that the developer passes
happenedAt param as nil or null, then both methods behave similarly.

Timed Events

Timed events are generally events which are time bound and contain duration information as
explained above. Timed events w.r.t Blotout's SDK are developer codified events only.

When developers want to log an event along with duration, then they can use the below mentioned
APIs to log a timed event.

void startTimedEvent(String eventName, Map<String, dynamic> startEventinfo);

void endTimedEvent(String eventName, Map<String, dynamic> endEventinfo);

There are two methods mentioned above:

e startTimedEvent : This method will start the timer for the event name mentioned in the
method call.

e endTimedEvent : This method will end the timer for the event name mentioned in the method
call.

Pll & PHI Events

Pll (Personal Identifiable Information) events are like developer codified events that carry sensitive
information related to User.

PHI ( Protected Health information) events are like Pll but carries user’s private health information

In Blotout managed or deployed Infrastructure, PIl and PHI events data is encrypted using
asymmetric encryption algorithms and provides access to authenticated users only.



Below methods can be used to log PIl and PHI information.

void logPIlIEvent(String eventName, Map<String, dynamic> eventinfo, DateTime eventTime);

void logPHIEvent(String eventName, Map<String, dynamic> eventinfo, DateTime eventTime);

Location Events

Blotout’s SDK doesn't provide any specific event for location, rather the Blotout SDK associates
events with location meta information for user analytics.

To turn ON the sensor

To turn ON Blotout’s SDK or for turning on a specific sensor for a specific task, use the below
mentioned APIs. When the Blotout SDK is integrated, then by default all the sensors are enabled.

// Default Value is YES, only set to NO when you want to disable SDK

// Once you disable SDK, SDK won't collect any further information but already collected
information,

// will be sent to server as per Blotout Contract

void setEnabled(bool enabled);

//Individual Module enable or disable control
//System Events, which SDK detect automatically
void setSystemEventsEnabled(bool systemEventsEnabled);

//Retention Events, which SDK detect for retention tracking like DAU, MAU
void setRetentionEventsEnabled(bool retentionEventsEnabled);

//Funnel Events, which SDK process for funnel analysis
public void setFunnelEventsEnabled(bool funnelEventsEnabled);

//Segments Events, which SDK process for segment analysis
void setSegmentEventsEnabled(bool segmentEventsEnabled);

//Developer Codified Events, which SDK collects when developer send some events
void setDeveloperEventsEnabled(bool developerEventsEnabled);



To turn OFF the sensor

To turn OFF Blotout's SDK or for turning off a specific sensor for a specific task, use the below
mentioned APIs. When the Blotout SDK is integrated then by default all the sensors are enabled.

// Default Value is YES, only set to NO when you want to disable SDK

// Once you disable SDK, SDK won't collect any further information but already collected
information,

// will be sent to server as per Blotout Contract

void setEnabled(bool enabled);

//Individual Module enable or disable control
//System Events, which SDK detect automatically

void setSystemEventsEnabled(bool systemEventsEnabled);

//Retention Events, which SDK detect for retention tracking like DAU, MAU
void setRetentionEventsEnabled(bool retentionEventsEnabled);

//Funnel Events, which SDK process for funnel analysis
void setFunnelEventsEnabled(bool funnelEventsEnabled);

//Segments Events, which SDK process for segment analysis
void setSegmentEventsEnabled(bool segmentEventsEnabled);

//Developer Codified Events, which SDK collects when developer send some events
void setDeveloperEventsEnabled(bool developerEventsEnabled);

REPUTATION AS A SERVICE (RaaS)

Device & Environment Reputation

Blotout's SDK provides an initial version of Reputation as a Service along with Blotout’s Analytics
SDK, which provides some very helpful information about the devices which are sending events back
to the server or interacting with client servers in any other way.



//RaaS information methods

//Share information about device, whether compromise or not

Future<bool> isDeviceCompromised();

//Share information about App, whether App is compromised or not

Future<bool> isAppCompromised();

//Share information about whether App Network is being proxied or not

Future<bool> isNetworkProxied();

//Share information about App platform & OS, whether App is running under simulated
environment or actual device

Future<bool> isSimulator();

//Share information about App platform & OS, whether App is running under Virtual Machine or
actual device

Future<bool> bool isRunningOnVM();

//Share information about the complete environment considering the above mentioned a whole
set.

Future<bool> isEnvironmentSecure();

There are several methods mentioned above, each method serves a specific purpose in sharing
information about device, network & environment details.

END USER DATA CONFIGURATION

End user data configuration can be done in two ways under the current version of Blotout's SDK. End
users are actual Device users who use Blotout clients' App for a specific purpose.

Turn OFF user data collection

To turn OFF data collection, so that SDK does not even collect data events while still enabled, please
use the below mentioned API.

void setDataCollectionEnabled(bool dataCollectionEnabled);

Turn ON user data collection

To turn ON data collection, so that SDK collects data events & process, please use the below
mentioned API.

void setDataCollectionEnabled(bool dataCollectionEnabled);



Disable event data sync with server

To disable event data sync with the server, while SDK can still collect and store events data locally,
please use the below mentioned API.

void setNetworkSyncEnabled(bool networkSyncEnabled)

Enable event data sync with servers

To enable event data sync with the server, so that the SDK can sync collected event data with the
server, please use the below mentioned API. Remember this will sync all the event data collected so
far and has not been synced with the server due to any reason.

void setNetworkSyncEnabled(bool networkSyncEnabled)

TROUBLESHOOTING

If you face challenges integrating Blotout even after following integration instructions in this
document, enable debug mode and check for error messages. If issues persist, please email us at
devehelp@blotout.io



FAQ'S

There are certain questions asked by different clients & we have documented them for finding
answers here in case they are helpful.

Question: Do | have to re-register my App in staging once registered in production?

Answer: Yes, you can use the same configuration but re-registration is required, with the same
account.

Question: Can | use Blotout’s SDK for funnel qualification?

Answer: Yes, funnel data should be created in the format acceptable by Blotout's SDK & Server.
Question: Can | use Blotout’s SDK for segment qualification?

Answer: Yes, segment data should be created in the format acceptable by Blotout SDK & Server.
Question: Can | use Blotout’'s SDK for campaign execution?

Answer: No, current Blotout’s SDK does not support but we are working on it & will be available soon.
Question: Can | use Blotout's SDK for any kind of developer codified events?

Answer: Yes, any developer codified event can be sent to Blotout's SDK and finally to server but SDK
only accepts event name as string and meta information as key/value pair which can contain values
in the data type format of String, INT, Float.



