Advanced RISC Machines

The ARM Instruction Set

The ARM Instruction Set - ARM University Program - V1.0

ARM Technical Documents

* ARM Corporation
 http://www.arm.com
* Technical reference manuals
« ARM7TDMI Rev4, ARMITDMI Rev3, ARM720T Rev3
 ARM & Thumb instruction set quick reference card
* Introduction to the Thumb extension to the ARM architecture
* Application notes
* Technical specifications
 ARM-Thumb procedure call standard
 AMBA specification
* User guides
 ARM Evaluator-7T board user guide
» Target development system user guide

o
o
o
L
=
=3
&
|
T

The ARM Instruction Set - ARM University Program - V1.0

Processor Modes

* The ARM has six operating modes:

User (unprivileged mode under which most tasks run)
FIQ (entered when a high priority (fast) interrupt is raised)
IRQ (entered when a low priority (normal) interrupt is raised)

Supervisor (entered on reset and when a Software Interrupt instruction is
executed)

Abort (used to handle memory access violations)
Undef (used to handle undefined instructions)

* ARM Architecture Version 4 adds a seventh mode:

The ARM Instruction Set - ARM University Program - V1.0

System (privileged mode using the same registers as user mode)

N B POWERED

The Registers

* ARM has 37 registers in total, all of which are 32-bits long.
1 dedicated program counter
1 dedicated current program status register
» 5 dedicated saved program status registers
30 general purpose registers

* However these are arranged into several banks, with the accessible
bank being governed by the processor mode. Each mode can access

o a particular set of rO-r12 registers
o a particular r13 (the stack pointer) and r14 (link register)
e 115 (the program counter)
o cpsr (the current program status register)
and privileged modes can also access
 a particular spsr (saved program status register)

N B POWERED

The ARM Instruction Set - ARM University Program - V1.0

Register Organisation

General registers and Program Counter

User32 / System F1Q32 Supervisor32 Abort32 IRQ32 Undefined32

r0 r0 r0 r0 r0 r0

rl rl rl rl rl rl

r2 r2 r2 r2 r2 r2

r3 r3 r3 r3 r3 r3

r4 r4 r4 r4 r4 r4

r5 5 5 5 5 r5

ré 6 r6 6 6 ré

r7 r7 r7 r7 r7 r7

r8 r8_fiq r8 r8 r8 r8

r9 r9_fiq r9 r9 r9 ro

r10 r10_fig r10 r10 r10 r10

ril ril_fig ril ril ril ril

ri2 ri2_fig ri2 ri2 ri2 ri2
r13 (sp) ri3_fig r13_svc r13_abt r13_irq r13_undef
r14 (Ir) ri4 fig r14 svc rl4 abt rl4 irq rl4_undef
r15 (pc) r15 (pc) r15 (pc) r15 (pc) r15 (pc) r15 (pc)

Program Status Registers

| cpsr | cpsr cpsr cpsr cpsr cpsr
spsr_fiq SpSr_svc spsr_abt spsr_irg spsr_undef

o
o
o
L
=
=3
&
|

The ARM Instruction Set - ARM University Program - V1.0

Register Example:
User to FIQ Mode

Registers in use Registers in use
User Mode FIQ Mode
r0 r0
rl rl
r2 r2
r3 r3
r4 r4
5 r5
r6 r6
r7 : r7
r8 r8_fig EXCEPTION r8 18 fig
r9 r9 fig r9 r9_fig
10 110_fig » 110 110_fiq
ril r11_fig : ril r11 fig
ri2 r2_fig r2 r12 fig
ri3 (sp) r13 fig : r13 (sp) r13 fig
ri4 (In ri4_fig E r14 (Ir) ri4_fig
r15 (pc) . r15 (pc)
\Return address calculated from User mode/
PC value and stored in FIQ mode LR -

\ psr_fig
User mode CPSR copied to FIQ mode SPSR /

o
o
o
L
=
=3
&
|

The ARM Instruction Set - ARM University Program - V1.0

Accessing Registers using
ARM Instructions

* No breakdown of currently accessible registers.
 All instructions can access r0-ri14 directly.
» Most instructions also allow use of the PC.
* Specific instructions to allow access to CPSR and SPSR.

* Note : When in a privileged mode, it is also possible to load / store the
(banked out) user mode registers to or from memory.

» See later for details.

N B POWERED

The ARM Instruction Set - ARM University Program - V1.0

The Program Status Registers
(CPSR and SPSRs)

31 28

8 4 0

Nl Z| C|V

1T 1T 1
Mode

aZ

Copies of the ALU status flags (latched if the
instruction has the "S" bit set).

* Condition Code Flags

N = Negative result from ALU flag.

Z = Zero result from ALU flag.
C = ALU operation Carried out
V = ALU operation oVerflowed

* Mode Bits
M[4:0] define the processor mode.

The ARM Instruction Set - ARM University Program - V1.0

*

Interrupt Disable bits.
| =1, disables the IRQ.
F =1, disables the FIQ.

T Bit (Architecture v4T only)
T =0, Processor in ARM state
T =1, Processor in Thumb state

N B POWERED

Condition Flags

Logical Instruction

Arithmetic Instruction

Flag

Negative
(N="1)

Zero
(z="1)

Carry
(C="1)

oVerflow
(V="1)

No meaning

Result is all zeroes

After Shift operation
‘1’ was left in carry flag

No meaning

The ARM Instruction Set - ARM University Program - V1.0

Bit 31 of the result has been set
Indicates a negative number in
signed operations

Result of operation was zero

Result was greater than 32 bits

Result was greater than 31 bits
Indicates a possible corruption of
the sign bit in signed
numbers

o
o
o
L
=
=3
&
|

ARM

The Program Counter (R15)

* When the processor is executing in ARM state:
 All instructions are 32 bits in length
 All instructions must be word aligned

» Therefore the PC value is stored in bits [31:2] with bits [1:0] equal to
zero (as instruction cannot be halfword or byte aligned).

* R14 is used as the subroutine link register (LR) and stores the return
address when Branch with Link operations are performed,
calculated from the PC.

* Thus to return from a linked branch
e MOV rib5,rl14

or
e MOV pc,Ir

o
o
o
L
=
=3
&
|
T

The ARM Instruction Set - ARM University Program - V1.0

Exception Handling

and the Vector Table

* When an exception occurs, the core:
® Copies CPSR into SPSR_<mode>
® Sets appropriate CPSR bits

+ If core implements ARM Architecture 4T and is
currently in Thumb state, then

= ARM state is entered.
+ Mode field bits
+ Interrupt disable flags if appropriate.
* Maps in appropriate banked registers
® Stores the “return address” in LR_<mode>
® Sets PC to vector address

* To return, exception handler needs to:
» Restore CPSR from SPSR_<mode>
* Restore PC from LR_<mode>

The ARM Instruction Set - ARM University Program - V1.0

0x00000000

0x00000004

0x00000008

0x0000000C

0x00000010

0x00000014

0x00000018

0x0000001C

Reset

Undefined Instruction

Software Interrupt

Prefetch Abort

Data Abort

Reserved

IRQ

ARM

o

o

o

L

= -
=3

&

|

11

The Instruction Pipeline

* The ARM uses a pipeline in order to increase the speed of the flow of
Instructions to the processor.

» Allows several operations to be undertaken simultaneously, rather than
serially.

ARM

PC+8 PC FETCH Instruction fetched from memory

PC+4 PC-4 DECODE Decoding of registers used in instruction

Register(s) read from Register Bank

Shift and ALU operation

Write register(s) back to Register Bank

* Rather than pointing to the instruction being executed, the
PC points to the instruction being fetched.

PC PC -8 EXECUTE

™

The ARM Instruction Set - ARM University Program - V1.0

B POWERED

12

Quiz #1 - Verbal

* What registers are used to store the program counter and link register?
* What is r13 often used to store?

* Which mode, or modes has the fewest available number of registers
available? How many and why?

B POWERED

™

The ARM Instruction Set - ARM University Program - V1.0 13

ARM Instruction Set Format

Instruction type

31 2827 1615 87 0
Cond 0 d 4 Opcode | S Rn Rd Operand?2
Cond 000O0O O|A S Rd Rn Rs 1001 Rm
Cond 0 0O0O0 1 U|A S RdH1 RdLo Rs 1001 Rm
Cond 00010 B|O 0 Rn Rd 00001001 Rm
Cond 0 1 d AU BlW L Rn Rd Offset
Cond 10Q9gHU SIW L Rn Register List
Cond OO0OQqHUYWML Rn Rd Offsetl 1§ S| H| 1| Offset2
Cond OO0OO|HA YO WL Rn Rd O00O0O 1S|H|1 Rm
Cond 10 L Offset
Cond 0001j001(Qg2111j211121111 0001 Rn
Cond 11gAU N| Wl L Rn CRd CPNum Offset
Cond 1110 Opl CRn CRd CPNum Op2 | O CRm
Cond 111 Opl|L CRn Rd CPNum Op2 |1 CRm
Cond 1111 SWI Number

The ARM Instruction Set - ARM University Program - V1.0

Data processing / PSR Transfer
Multiply

Long Multiply (v3M / v4 only)
Swap

Load/Store Byte/Word

Load/Store Multiple

Halfword transfer : Immediate offset (v4 only)
Halfword transfer: Register offset (v4 only)
Branch

Branch Exchange (VAT only)
Coprocessor data transfer
Coprocessor data operation
Coprocessor register transfer

Software interrupt

o
o
o
L
= -
=3
&
|

ARM

14

™

Conditional Execution

* Most instruction sets only allow branches to be executed conditionally.

* However by reusing the condition evaluation hardware, ARM effectively
increases number of instructions.

e All instructions contain a condition field which determines whether the
CPU will execute them.

» Non-executed instructions soak up 1 cycle.

— Still have to complete cycle so as to allow fetching and decoding of
following instructions.

* This removes the need for many branches, which stall the pipeline (3
cycles to refill).

» Allows very dense in-line code, without branches.

» The Time penalty of not executing several conditional instructions is
frequently less than overhead of the branch
or subroutine call that would otherwise be needed.

B POWERED

™

The ARM Instruction Set - ARM University Program - V1.0 15

The Condition Field

31 28 24 20 16 12 8 4 0
T 1 N N N N I Y Y I Y O IO I IO A
Cond |
I
0000 = EQ - Z set (equal) 1001 = LS - C clear or Z (set unsigned

lower or same)

1010 = GE - N set and V set, or N clear
and V clear (>or =)

N : 1011 =LT - N setand V clear, or N clear
0011 =LO/CC - C clear (unsigned and V set (>)

lower)
0100 = MI -N set (negative)

0101 = PL - N clear (positive or
Zero)

0110 =VS -V set (overflow)
0111 =VC - V clear (no overflow)
1000 = HI - C set and Z clear

— (unsignedhighen

The ARM Instruction Set - ARM University Program - V1.0

0001 = NE - Z clear (not equal)

0010 =HS/CS - C set (unsigned
higher or same)

1100 = GT - Z clear, and either N set and
V set, or N clear and V set (>)

1101 = LE - Z set, or N set and V clear,or
N clear and V set (<, or =)

1110 = AL - always
1111 = NV - reserved.

o
o
o
L
= -
=3
&
|

ARM

16

Using and updating the
Condition Field

* To execute an instruction conditionally, simply postfix it with the
appropriate condition:

» For example an add instruction takes the form:
— ADD rO,rl1,r2 , rO = r1 + r2 (ADDAL)
» To execute this only if the zero flag is set:

— ADDEQ rO,rl1,r2 ; 1T zero flag set then..
; -2 0O =rl1 + r2

* By default, data processing operations do not affect the condition flags
(apart from the comparisons where this is the only effect). To cause the
condition flags to be updated, the S bit of the instruction needs to be set
by postfixing the instruction (and any condition code) with an “S”.

e For example to add two numbers and set the condition flags:
— ADDS rO,rl,r2 ; rO =rl + r2

, --.. and set flags

N B POWERED

The ARM Instruction Set - ARM University Program - V1.0 17

Conditional Execution con

* Check the conditional field of CPSR and the conditional field of
current instruction.

» |f the condition matches, current instruction is executed: otherwise,
current instruction execution is aborted.

condition code Hags_l (resarved) control bits
I T

31 30 29 2 X7 26 25 24 23 g T & 5 4 3 2 1 o

N | Z c v] . . . I . | F | T/ M4|MI|M2]| M1 |[MO
| L]
Crvarficm ‘ I_ Miode bils

Staka bit

Carry | Bormow
f Extand FIC disabie
Farg IRQ disable
Negative | Less Than
s} | M 2 M 23 20 18 16 15 12 11 a 7 4 3 I
Cond agoo 1o 01 apt 111t Apt 1 1 10 o0 1 Rn
L 1 L 1

[
Operand register

IThil 0 of Bno= 1, subsaquent instruclions decoded as THUMEB instroctions
bl 0 of Bn o= 0, subsequent instruclions decoded as ARM nsireslions

Condition Fiald

o
o
o
L
=
=3
&
|

ARM

The ARM Instruction Set - ARM University Program - V1.0

Conditional Execution con

* Reducing the number of branches
e MOVS ro, r1, LSR #1 ; C(flag) :=r1[0]

« MOVCC r0, #10 - 1f C=0, then r0 := 10
« MOVCS 10, #11 - if C=1, thenr0 := 11
e MOVS r0, r4 1fr4==0thenr0:=0
« MOVNE 10, #1 ‘elser0:=1

o
o
o
L
=
=3
&
|
T

The ARM Instruction Set - ARM University Program - V1.0

Branch instructions (1)

* Branch : B{<cond>} label

* Branch with Link : BL{<cond>} sub routine_label

31 28 27 25 24 23 0
L L Frrrrrrrrrtr 1ttt 1T >t 1T 1T 1T 1T 17 17 11T 7171
Cond 1 0 1)L Offset

R — L Link bit 0=Branch

1 = Branch with link
Condition field

* The offset for branch instructions is calculated by the assembler:

« By taking the difference between the branch instruction and the
target address minus 8 (to allow for the pipeline).

» This gives a 26 bit offset which is right shifted 2 bits (as the
bottom two bits are always zero as instructions are word —

aligned) and stored into the instruction encoding.

» This gives a range of + 32 Mbytes.

N B POWERED

The ARM Instruction Set - ARM University Program - V1.0 20

The ARM Instruction Set - ARM University Program - V1.0

Branch instructions (2)

When executing the instruction, the processor:
« shifts the offset left two bits, sign extends it to 32 bits, and adds it to PC.

Execution then continues from the new PC, once the pipeline has been
refilled.

The "Branch with link" instruction implements a subroutine call by
writing PC-4 into the LR of the current bank.

* i.e. the address of the next instruction following the branch with link
(allowing for the pipeline).

To return from subroutine, simply need to restore the PC from the LR:
e MOV pc, Ir
» Again, pipeline has to refill before execution continues.

The "Branch' instruction does not affect LR.

Note: Architecture 4T offers a further ARM branch instruction, BX
« See Thumb Instruction Set Module for details.

B POWERED

™

21

Data processing Instruction Format

1] 2% 27 M 25 24 21 K 1% L 15 12 11 =]
Caond ol 1] OpCode |5 R Fd Operand 2
L 1 L 1 1 I I 1 I

L

Destination register
1st operand register
Set condition codes

O = i el allai condiless: Soxla
1 = deml doo fadedein cokich

Operation Code

O = A RO
D300 = EOR

D30 = ELE -
31 = AEE -
O = 400 -

D108 = &0

0110 = BT -

- Fed = Ol AR Ol
- Rd= Opl EOR Op2

- Rl = i+ O+
Al = Cpa - Ol =

1

r] Il!-l-»:I

0811 = ASC - Fd = Opd - Opl =15 1

130 = TET -l corsiemn ook =0 O AMNE Opd
1308 = TEO - dal Skl pn ccabas <O EIDR Gpl
1310 = SKP - Sl Soredlns codan on O -0
13 = SRR - sl sondiien codan on Cpill = 08
1100 = OFR - Al = O O Ol

1100 = A - Rl = Dl

1110 = @IS - Fedtw Opd AND ST Opd

1110 = BAVH - Rl = HOT Jp2

Immediate Operand

0 O = opmaiired T i o regsler .

Shuift R

2nd operand regisler

shill appled do BFm

1 = opmnt i o i il vl s
[

Rodata lerireh

1 [I I
Ursigred E bil immediates salue

Condition fiald

The ARM Instruction Set - ARM University Program - V1.0

shill apglied o Imm
=
[
ARMa
™

22

Data processing Instructions

* Largest family of ARM instructions, all sharing the same instruction
format.

* Contains:
 Arithmetic operations
o Comparisons (no results - just set condition codes)
 Logical operations
» Data movement between registers
* Remember, this is a load / store architecture
» These instruction only work on registers, NOT memory.
* They each perform a specific operation on one or two operands.
» First operand always a register - Rn
» Second operand sent to the ALU via barrel shifter.
* We will examine the barrel shifter shortly.

B POWERED

™

The ARM Instruction Set - ARM University Program - V1.0 23

Arithmetic Operations

* QOperations are:

« ADD operandl + operand?2

« ADC operandl + operand2 + carry

« SUB operandl - operand2

« SBC operandl - operand2 + carry -1

« RSB operand2 - operandl

« RSC operand? - operandl + carry - 1
* Syntax:

o <Operation>{<cond>}H{S} Rd, Rn, Operand?2
* Examples

e« ADDTYO, rl, r2
e SUBGT r3,r3, #1
e RSBLES T4, r5, #5

o
o
o
L
=
=3
&
|
T

The ARM Instruction Set - ARM University Program - V1.0

Comparisons

* The only effect of the comparisons is to
« UPDATE THE CONDITION FLAGS. Thus no need to set S bit.
* QOperations are:

« CMP operandl - operand2, but result not written

« CMN operandl + operand?2, but result not written

o TST operandl AND operand2, but result not written

e TEQ operandl EOR operand2, but result not written
* Syntax:

o <Operation>{<cond>} Rn, Operand2
* Examples:

« CMP ro, rl

« TSTEQ r12,#5

N B POWERED

The ARM Instruction Set - ARM University Program - V1.0 25

Logical Operations

* QOperations are:

« AND operandl AND operand?2

« EOR operandl EOR operand2

« ORR operandl OR operand2

 BIC operandl AND NOT operand?2 [ie bit clear]
* Syntax:

o <Operation>{<cond>}{S} Rd, Rn, Operand2
* Examples:

« AND ro, rl, r2

 BICEQ 2, r3, #7
 EORS r1,r3,r0

N B POWERED

The ARM Instruction Set - ARM University Program - V1.0 26

Data Movement

* QOperations are:

e MOV operand?2

« MVN NOT operand?2

Note that these make no use of operandl.

* Syntax:

o <Operation>{<cond>}{S} Rd, Operand?2
* Examples:

« MOV ro, rl

« MOVS r2, #10

 MVNEQ rl1#0

The ARM Instruction Set - ARM University Program - V1.0

o
o
o
L
=
=3
&
|
T

27

Quiz #2

* Convert the GCD
algorithm given in this
flowchart into

Yes . stop 1) “Normal” assembler,
where only branches can
be conditional.

2) ARM assembler, where

all instructions are
Ves No pondlthnal, thus _
\ Improving code density.

r0=r0-rl r1=rl-r0 * The only instructions you
need are CMP, B and SUB.

B POWERED

™

The ARM Instruction Set - ARM University Program - V1.0 28

Quiz #2 - Sample Solutions

“Normal” Assembler

gcd cmp rO, rl ;reached the end?
beq stop
blt less ;iIF ro > rl
sub rO, rO, r1 ;subtract rl1 from rO
bal gcd

less sub r1l, r1l, rO ;subtract rO from rl
bal gcd

stop

ARM Conditional Assembler

gcd cmp ro, rl ;iF rOo > rl
subgt r0, rO, rl j;subtract rl from rO
sublt rl, r1, rO ;else subtract rO from ril
bne gcd reached the end?

o
o
o
L
=
=3
&
|

ARM

The ARM Instruction Set - ARM University Program - V1.0

The Barrel Shifter

* The ARM doesn’t have actual shift instructions.

* Instead it has a barrel shifter which provides a mechanism to carry out
shifts as part of other instructions.

* So what operations does the barrel shifter support?

o
o
o
L
=
=3
&
|

The ARM Instruction Set - ARM University Program - V1.0

™

30

Barrel Shifter - Left Shift

* Shifts left by the specified amount (multiplies by powers of two) e.g.
LSL #5 = multiply by 32

Logical Shift Left (LSL)

A

CF Destination ~— 0

The ARM Instruction Set - ARM University Program - V1.0 31

o
o
o
L
=
=3
&
|
T

Barrel Shifter - Right Shifts

Logical Shift Right

«Shifts right by the
specified amount _ _
(divides by powers of ..0 — Destination
two) e.g.

LSR #5 = divide by 32

Logical Shift Right

Y

CF

Arithmetic Shift Right Arithmetic Shift Right

o Shifts right (divides by |
powers of two) and

preserves the sign bit, > | Destination
for 2's complement

operations. e.g. Sign bit shifted in
ASR #5 = divide by 32

Y

CF

N B POWERED

The ARM Instruction Set - ARM University Program - V1.0 32

Barrel Shi

Rotate Right (ROR)

o Similar to an ASR but the
bits wrap around as they
leave the LSB and appear as
the MSB.

e.0. ROR #5

 Note the last bit rotated is
also used as the Carry Out.

Rotate Right Extended (RRX)

 This operation uses the
CPSR C flag as a 33rd bit.

 Rotates right by 1 bit.
Encoded as ROR #0.

The ARM Instruction Set - ARM University Program -

fter - Rotations

Rotate Right

> Destination >~ CF
Rotate Right through Carry
| Destination >~ CF

o
o
o
L
=
=3
&
|
T

V1.0

33

The cross-bar switch barrel
shifter principle

in[3]

in[2]

in[1]

in[O]

right 3right 2 right 1 no shift

A

T,

7/

g left 1

-

/

7’/ left 2

77

/

/left 3

VTR

—

=

out[0] out[1] out[2] out[3]

The ARM Instruction Set - ARM University Program - V1.0

o
o
o
L
=
=3
&
|
T

34

Using the Barrel Shifter:
The Second Operand

Operand Operand <———-
1 2\

|

‘ Barrel \\
Shifter \

ALU

|

Result

The ARM Instruction Set - ARM University Program - V1.0

* Register, optionally with shift
operation applied.

* Shift value can be either:
5 bit unsigned integer

» Specified in bottom byte of
another register.

| I \

* Immediate value
e 8 bhit number

» Can be rotated right through
an even number of
positions.

o Assembler will calculate
rotate for you from

constant.

N B POWERED

35

Second Operand :
Shifted Register

* The amount by which the register is to be shifted is contained in
either:

 the immediate 5-bit field in the instruction

— NO OVERHEAD

— Shift is done for free - executes in single cycle.
* the bottom byte of a register (not PC)

— Then takes extra cycle to execute

— ARM doesn’t have enough read ports to read 3 registers at
once.

— Then same as on other processors where shift is
separate instruction.

* If no shift is specified then a default shift is applied: LSL #0
* 1.e. barrel shifter has no effect on value in register.

o
o
o
L
=
=3
&
|
T

The ARM Instruction Set - ARM University Program - V1.0

36

Shift Format

— Shift t&pn
{0 = kgloal
01 = kogloal righ
10 = arthmslk: right
11 = rofak ighl

Shift amount

B ok Lnskonad | ntagar

— Ehrﬂt!ﬂpn
{0 = kogloal el
01 = kgloal righ
10 = arthmsli: right
11 = rofata righl

Shift register

Ehit amound spectied In
betiom byta of Rs

The ARM Instruction Set - ARM University Program - V1.0

o
L
=
=3
&
|
™

37

The ARM Instruction Set - ARM University Program - V1.0

Second Operand :
Using a Shifted Register

Using a multiplication instruction to multiply by a constant means first
loading the constant into a register and then waiting a number of
internal cycles for the instruction to complete.

A more optimum solution can often be found by using some combination
of MOVs, ADDs, SUBs and RSBs with shifts.

« Multiplications by a constant equal to a ((power of 2) £ 1) can be done in
one cycle.

Example: rO=rl1*5
=rl+(r1*4)

< ADDYO0, rl, rl, LSL #2
Example: r2 =r3 * 105

=r3*15*7

=r3*(16-1)*(8-1)
&~ RSBr2,r3,r3, LSL #4 "r2=r3*15
& RSBr2,r2, r2, LSL #3 r2=r2%*

N B POWERED

>
X
K 4

38

Second Operand :
Immediate Value (1)

* There is no single instruction which will load a 32 bit immediate constant
Into a register without performing a data load from memory.

» All ARM instructions are 32 bits long
 ARM instructions do not use the instruction stream as data.

* The data processing instruction format has 12 bits available for
operand2

 |f used directly this would only give a range of 4096.
* Instead it is used to store 8 bit constants, giving a range of 0 - 255.

* These 8 bits can then be rotated right through an even number of
positions (ie RORs by 0, 2, 4,..30).

» This gives a much larger range of constants that can be directly loaded,
though some constants will still need to be loaded
from memory.

B POWERED

™

The ARM Instruction Set - ARM University Program - V1.0 39

Second Operand :
Immediate Value (2)

* This gives us:

« 0-255 [0 - Oxff]

e 256,260,264,..,1020 [0x100-0x3fc, step 4, 0x40-0xff ror 30]

» 1024,1040,1056,..,4080 [0x400-0xff0, step 16, 0x40-0xff ror 28]

» 4096,4160, 4224,..,16320 [0x1000-0x3fc0, step 64, 0x40-0xff ror 26]
* These can be loaded using, for example:

« MOV r0, #0x40, 26 ; => MOV r0, #0x1000 (ie 4096)

* To make this easier, the assembler will convert to this form for us if
simply given the required constant:

« MOV r0, #4096 ; => MOV r0, #0x1000 (ie 0x40 ror 26)
* The bitwise complements can also be formed using MVN:
e MOV r0, #0xFFFFFFFF ; assembles to MVN r0, #0

* If the required constant cannot be generated, an error will
be reported.

N B POWERED

The ARM Instruction Set - ARM University Program - V1.0 40

Loading full 32 bit constants

* Although the MOV/MVN mechansim will load a large range of constants
Into a register, sometimes this mechansim will not generate the required
constant.

* Therefore, the assembler also provides a method which will load ANY 32
bit constant:

e LDR rd,=numeric constant

* If the constant can be constructed using either a MOV or MVN then this
will be the instruction actually generated.

* Otherwise, the assembler will produce an LDR instruction with a PC-
relative address to read the constant from a literal pool.
e LDR r0,=0x42 ; generates MOV r0O,#0x42
e LDR r0,=0x55555555 ; generate LDR rO,[pc, offset to lit pool]

* As this mechanism will always generate the best instruction for a given
case, it is the recommended way of loading constants.

B POWERED

™

The ARM Instruction Set - ARM University Program - V1.0 41

Multiplication Instructions

* The Basic ARM provides two multiplication instructions.

* Multiply
 MUL{<cond>}{S} Rd, Rm, Rs ; Rd=Rm *Rs

* Multiply Accumulate - does addition for free
 MLA{<cond>}{S} Rd, Rm, Rs,Rn ; Rd = (Rm * Rs) + Rn

* Restrictions on use:
* Rd and Rm cannot be the same register

— Can be avoided by swapping Rm and Rs around. This works
because multiplication is commutative.

e Cannot use PC.
These will be picked up by the assembler if overlooked.
* QOperands can be considered signed or unsigned
» Up to user to interpret correctly.

N B POWERED

The ARM Instruction Set - ARM University Program - V1.0 42

Quiz #3

1. Specify instructions which will implement the following:
a) r0 =16 b)ri=r0*4
c)rO=rl1/16 (rlsigned 2's comp.) dyrli=r2*7

2. What will the following instructions do?
a) ADDS r0, rl, r1, LSL #2 b) RSB r2, r1, #0

3. What does the following instruction sequence do?
ADD 0, r1, rl, LSL #1
SUB 0, r0, rl, LSL #4
ADD r0, r0, r1, LSL #7

o
o
o
L
=
=3
&
|
T

The ARM Instruction Set - ARM University Program - V1.0

43

Load / Store Instructions

* The ARM is a Load / Store Architecture:
 Does not support memory to memory data processing operations.
« Must move data values into registers before using them.

* This might sound inefficient, but in practice isn’t:
» Load data values from memory into registers.

» Process data in registers using a number of data processing
Instructions which are not slowed down by memory access.

 Store results from registers out to memory.

* The ARM has three sets of instructions which interact with main
memory. These are:

 Single register data transfer (LDR / STR).
» Block data transfer (LDM/STM).
 Single Data Swap (SWP).

N B POWERED

The ARM Instruction Set - ARM University Program - V1.0 44

The ARM Instruction Set - ARM University Program - V1.0

Single register data transfer

The basic load and store instructions are:
» Load and Store Word or Byte
— LDR/STR/LDRB/STRB

ARM Architecture Version 4 also adds support for halfwords and signed
data.

» Load and Store Halfword
— LDRH/STRH
» Load Signed Byte or Halfword - load value and sign extend it to 32 bits.
— LDRSB / LDRSH
All of these instructions can be conditionally executed by inserting the

appropriate condition code after STR / LDR.
* e.g. LDREQB

Syntax:
o <LDR|STR>{<cond>}{<size>} Rd, <address>

N B POWERED

45

Single register data transfer

3l 1% 37 36 35 M 23 22 2L M0 18 16 15 12 11 0
Cond o JrPJuB WL Rn Rd Offzat
L | I | | I
L I
Source/Destination register
Base reglster
Load/Store bit

0= Shoig B ma iy
1 = Lo fross secimosy

Write-back bit
D = no wiits-bask
1 = witil pddroes islo baso

Byte/Word bit

D = transhker wind guaniiby
1 = ik Eati ey

Up'Down bit

D= down; st ofteel froms bosa
1= up; aod offst 1o baes

Pra/Post indexing bit

D= poal; oo ofsat offer harsfor
1 = i el ottt b Irenkar

Immeadiate offsat

O = o B o i ek

Immediate offsat

I
Unzignied 12 bit Immediate ofizet

1= e b i gk i1

Shift Fm

Ofet ragister

shift appiled to Rm
Condition fleld

The ARM Instruction Set - ARM University Program - V1.0

o
o
o
L
=
=3
&
|

46

Load and Store Word or Byte:
Base Register

* The memory location to be accessed is held in a base register

« STR O, [r1] ; Store contents of r0 to location pointed to
; by contents of rl.
« LDR 2, [r1] , Load r2 with contents of memory location

; pointed to by contents of rl.

ro Memory
Source I
Register |
for STR I
rl r2 Destinati
Base estination
Register 0x200 || — 0x200 0x5 —_ 0x5 Register
I for LDR
|
I

o
o
o
L
=
=3
&
|
T

The ARM Instruction Set - ARM University Program - V1.0

47

Load and Store Word or Byte:
Offsets from the Base Register

* As well as accessing the actual location contained in the base register,
these instructions can access a location offset from the base register
pointer.

* This offset can be
* An unsigned 12bit immediate value (ie 0 - 4095 bytes).
» A register, optionally shifted by an immediate value
* This can be either added or subtracted from the base register:
 Prefix the offset value or register with “+’ (default) or *-’.
* This offset can be applied:
 before the transfer is made: Pre-indexed addressing
— optionally auto-incrementing the base register, by postfixing the

instruction with an “!”.

o after the transfer is made: Post-indexed addressing
— causing the base register to be auto-incremented.

N B POWERED

The ARM Instruction Set - ARM University Program - V1.0 48

Load and Store Word or Byte:
Pre-indexed Addressing

* Example: STRr0, [r1,#12] Memory 0 Source

0x5 Register

I
I for STR
Offset I
—>0x200 0X5

rl
Base T
Register [9x200 ' > 0x200

* To store to location 0x1f4 instead use: STR r0, [rl,#-12]
* To auto-increment base pointer to 0x20c use: STR r0, [rl, #12]!

* If r2 contains 3, access 0x20c by multiplying this by 4:
« STR O, [r1, r2, LSL #2]

N B POWERED

The ARM Instruction Set - ARM University Program - V1.0 49

Load and Store Word or Byte:
Post-indexed Addressing

* Example: STRr0, [rl], #12

Updated rl
Base 0x20c
Register
Original 1

Base 0x200
Register

Offset

~ 0x20c

A

\

—> 0x200

Memory

0Ox5

/

ro
Source
0x5 Register
for STR

* To auto-increment the base register to location 0x1f4 instead use:
« STRO, [r1], #-12
* If r2 contains 3, auto-incremenet base register to 0x20c by multiplying

this by 4:

« STRO, [r1], r2, LSL #2

The ARM Instruction Set - ARM University Program - V1.0

N B POWERED

50

Load and Stores
with User Mode Privilege

* When using post-indexed addressing, there is a further form of
Load/Store Word/Byte:

e <LDR|STR>{<cond>}{B}T Rd, <post_indexed address>

* When used in a privileged mode, this does the load/store with user mode
privilege.

» Normally used by an exception handler that is emulating a memory
access instruction that would normally execute in user mode.

N B POWERED

The ARM Instruction Set - ARM University Program - V1.0 51

Example Usage of
Addressing Modes

* Imagine an array, the first element of which is pointed to by the contents
of rO0.
Memory

* If we want to access a particular element, element Offset
then we can use pre-indexed addressing: ; :
 rliselement we want. _
« LDR 12, [rO, rl1, LSL #2] 12
Pointer to 2 8
* If we want to step through every start of array 1 4
element of the array, for instance ro —0 0

to produce sum of elements in the
array, then we can use post-indexed addressing within a loop:

 rlisaddress of current element (initially equal to r0).
« LDRr2,[rl], #4

Use a further register to store the address of final element,
so that the loop can be correctly terminated.

B POWERED

The ARM Instruction Set - ARM University Program - V1.0 52

Quiz #4

* Write a segment of code that add together elements x to x+(n-1) of an
array, where the element x=0 is the first element of the array.

* Each element of the array is word sized (ie. 32 bits).

* The segment should use post-indexed addressing.

* At the start of your segments, you should assume that:
10 points to the start of the array.

Elements
e r1=X :
e 12=n ’
<~ xX+(n-1)
n elements :
- X +1
< X
o h— -~ 0

B POWERED

™

The ARM Instruction Set - ARM University Program - V1.0 53

___ADD
ADD
MOV

loop
LDR
ADD
CMP

BLT

> on exit sum contained

The ARM Instruction Set - ARM University Program - V1.0

Quiz #4 - Sample Solution

rO, rO, rl1, LSL#2
r2, rO, r2, LSL#2
rl, #0

r3, [rO0], #4
rl, rl1, r3
ro, r2

loop

in rl

Set rO to address of element x
Set r2 to address of element n+1
Initialise counter

Access element and move to next
Add contents to counter
Have we reached element x+n?

IT not - repeat for
next element

o
o
o
L
= -
=3
&
|

ARM

54

Block Data Transfer (1)

* The Load and Store Multiple instructions (LDM / STM) allow betweeen
1 and 16 registers to be transferred to or from memory.

* The transferred registers can be either:
» Any subset of the current bank of registers (default).

» Any subset of the user mode bank of registers when in a priviledged
mode (postfix instruction with a “*\’).

31 28 27 24 23 22 21 20 19 16 15 0
T 17 11 -y rrrrr 111 T T T 1T T1T 711
Cond |1 0 O] PJU|S|W|L Rn Register list
l I L | Il | J
Condition field Base register Each bit corresponds to a particular
. . register. For example:
UP/DOV\{ﬂ bit Load/Store bit * Bit 0 set causes r0 to be transferred.
0 = Down; subtract offset from base 0 = Store to memory » Bit 0 unset causes r0 not to be transferred.
1= Up ; add offset to base 1 =Load frommemory | At east one register must be
Pre/Post indexing bit —— Write- back bit transferred as the list cannot be empty.
0 = Post; add offset after transfer, 0= no_wrlte-back_
1 =Pre ; add offset before transfer 1 = write address into base
PSR and force user bit

0 =don’t load PSR or force user mode
1 = load PSR or force user mode

o
o

o

L

= -
=3

&

|

ARM

The ARM Instruction Set - ARM University Program - V1.0 55

Block Data Transfer (2)

* Base register used to determine where memory access should occur.

4 different addressing modes allow increment and decrement inclusive or
exclusive of the base register location.

» Base register can be optionally updated following the transfer (by
appending it with an ‘!”.

» Lowest register number is always transferred to/from lowest memory
location accessed.

* These instructions are very efficient for
 Saving and restoring context
— For this useful to view memory as a stack.
* Moving large blocks of data around memory
— For this useful to directly represent functionality of the instructions.

B POWERED

™

The ARM Instruction Set - ARM University Program - V1.0 56

Stacks

* A stack is an area of memory which grows as new data is “pushed’ onto

the “top” of it, and shrinks as data is “popped” off the top.
* Two pointers define the current limits of the stack.

* A base pointer

— used to point to the “bottom” of the stack (the first location).

» A stack pointer

— used to point the current “top” of the stack.

PUSH
{1,2,3}
SP——
SP —>
BASE —> BASE——>

The ARM Instruction Set - ARM University Program - V1.0

POP

SP——

BASE——

Result of
pop = 3

B POWERED

57

™

*

The ARM Instruction Set - ARM University Program - V1.0

Stack Operation

Traditionally, a stack grows down in memory, with the last “pushed”
value at the lowest address. The ARM also supports ascending stacks,
where the stack structure grows up through memory.

The value of the stack pointer can either:
 Point to the last occupied address (Full stack)
— and so needs pre-decrementing (ie before the push)
 Point to the next occupied address (Empty stack)
— and so needs post-decrementing (ie after the push)
The stack type to be used is given by the postfix to the instruction:
e STMFD / LDMFD : Full Descending stack
« STMFA /LDMFA : Full Ascending stack.
« STMED / LDMED : Empty Descending stack
« STMEA /LDMEA : Empty Ascending stack
Note: ARM Compiler will always use a Full descending stack.

N B POWERED

58

STMFD sp!,

{rO,rl1,r3-r5}

Old SP—

The ARM Instruction Set - ARM University Program - V1.0

Stack Examples

STMED sp!,
{r0,rl,r3-r5}

Old SP—>

STMFA sp!,

Old SP —

{r0,rl1,r3-r5}

B

STMEA sp!,

Old SP

{r0,rl,r3-r5}

0x418

0x400

| Ox3e8

o
o
o
L
= -
=3
&
|

ARM

59

Stacks and Subroutines

* One use of stacks is to create temporary register workspace for
subroutines. Any registers that are needed can be pushed onto the stack
at the start of the subroutine and popped off again at the end so as to
restore them before return to the caller :

STMFD sp!,{rO0-r12, Ir} ; stack all registers
........ ; and the return address
LDMFD sp!,{rO-r12, pc} ; load all the registers

; and return automatically
* See the chapter on the ARM Procedure Call Standard in the SDT

Reference Manual for further details of register usage within
subroutines.

* If the pop instruction also had the ‘S’ bit set (using ‘*’) then the transfer
of the PC when in a priviledged mode would also cause the SPSR to be
copied into the CPSR (see exception handling module).

B POWERED

‘!l!lll

™

The ARM Instruction Set - ARM University Program - V1.0 60

Direct functionality of
Block Data Transfer

* When LDM / STM are not being used to implement stacks, it is clearer to
specify exactly what functionality of the instruction is:

* I.e. specify whether to increment / decrement the base pointer, before or
after the memory access.

* In order to do this, LDM / STM support a further syntax in addition to
the stack one:

« STMIA /LDMIA : Increment After

e STMIB /LDMIB : Increment Before

« STMDA /LDMDA : Decrement After
« STMDB /LDMDB : Decrement Before

B POWERED

™

The ARM Instruction Set - ARM University Program - V1.0 61

Example: Block Copy

» Copy a block of memory, which is an exact multiple of 12 words long
from the location pointed to by r12 to the location pointed to by r13. r14

points to the end of block to be copied.

; rl2 points to the start of the source data
; rl4 points to the end of the source data
; rl3 points to the start of the destination data

loop LDMIA ri12!, {rO-r11} : load 48 bytes s —
STMIA r13!, {rO-rl1ll1l} ; and store them 4 —>
CMP ri2, rl4 ; check for the end
BNE loop ; and loop until done
ri2——-

» This loop transfers 48 bytes in 31 cycles
e Over 50 Mbytes/sec at 33 MHz

The ARM Instruction Set - ARM University Program - V1.0

Increasing
Memory

62

Quiz #5

* The contents of registers r0 to r6 need to be swapped around thus:

rO moved into r3
rl moved into r4
r2 moved Into r6
r3 moved into r5
r4 moved into r0
r5 moved into rl
ré moved into r2

* Write a segment of code that uses full descending stack operations to
carry this out, and hence requires no use of any other registers for
temporary storage.

The ARM Instruction Set - ARM University Program - V1.0

B POWERED

™

63

Quiz #5 - Sample Solution

STMFD sp!, LDMFD sp!, LDMFD sp!, LDMFD sp!,
{rO-r6} {r3,r4,r6} {r5} {rO-r2}

Old SP —>

ro r5 = r3 ro r4

r3 = =
r4 = rl rl = r5
ré = r2 r2 = ré6

B POWERED

The ARM Instruction Set - ARM University Program - V1.0 64

Swap and Swap Byte
Instructions

* Atomic operation of a memory read followed by a memory write
which moves byte or word quantities between registers and
memory.

* Syntax:
o SWP{<cond>}{B} Rd, Rm, [Rn]

Rn & W ... > :E:E:E:E:E:E:E:E:E: temp

@/ O

* Thus to implement an actual swap of contents make Rd = Rm.

* The compiler cannot produce this instruction.

B POWERED

The ARM Instruction Set - ARM University Program - V1.0 65

™

Software Interrupt (SWI)

31 28 27 24 23 0

L L L L L L L L L I I O I L e
Cond |1 111 Comment field (ignored by Processor)

L |

Condition Field

* |n effect, a SWI is a user-defined instruction.

* It causes an exception trap to the SWI hardware vector (thus causing a
change to supervisor mode, plus the associated state saving), thus causing
the SWI1 exception handler to be called.

* The handler can then examine the comment field of the instruction to
decide what operation has been requested.

* By making use of the SWI mechansim, an operating system can
iImplement a set of privileged operations which applications running in
user mode can request.

* See Exception Handling Module for further details.

B POWERED

66

™

The ARM Instruction Set - ARM University Program - V1.0

The ARM Instruction Set - ARM University Program - V1.0

PSR Transfer Instructions

MRS and MSR allow contents of CPSR/SPSR to be transferred from
appropriate status register to a general purpose register.

 All of status register, or just the flags, can be transferred.

Syntax:
e MRS{<cond>} Rd,<psr> ; Rd = <psr>
e MSR{<cond>} <psr>,Rm ; <psSr> = Rm
e MSR{<cond>} <psrf>,Rm ; <psrf> = Rm
where

e <psr> = CPSR, CPSR_all, SPSR or SPSR_all
e <psrf> = CPSR_flg or SPSR_flg

Also an immediate form
e MSR{<cond>} <psrf>,#Immediate

 This immediate must be a 32-bit immediate, of which the 4
most significant bits are written to the flag bits.

N B POWERED

67

Using MRS and MSR

* Currently reserved bits, may be used in future, therefore:
 they must be preserved when altering PSR
* the value they return must not be relied upon when testing other bits.

31 28 8 4 0

T T 1T 1T 1T 1T 1T 1T T 1T 1T 17T T T T T 11 T 11
N|Z|ClV I|{F|T| Mode

* Thus read-modify-write strategy must be followed when modifying any
PSR:

» Transfer PSR to register using MRS

* Modify relevant bits

» Transfer updated value back to PSR using MSR
* Note:

* In User Mode, all bits can be read but only the flag bits can
be written to.

N B POWERED

The ARM Instruction Set - ARM University Program - V1.0 68

Quiz #6

* Write a short code segment that performs a mode change by modifying
the contents of the CPSR

« The mode you should change to is user mode which has the value 0x10.

« This assumes that the current mode is a priveleged mode such as
supervisor mode.

« This would happen for instance when the processor is reset - reset code
would be run in supervisor mode which would then need to switch to
user mode before calling the main routine in your application.

* You will need to use MSR and MRS, plus 2 logical operations.

31 28 8 4 0
rFrr Tttt 1t1°r t 11 17 1T 171" T

The ARM Instruction Set - ARM University Program - V1.0

Quiz #6 - Sample Solution

* Set up useful constants:

mmask EQU Ox1f
userm EQU 0x10

* Start off here in supervisor mode.
MRS ro, cpsr
BIC ro, rO,#mmask
ORR ro,r0,#userm
MSR cpsr, rO

* End up here in user mode.

The ARM Instruction Set - ARM University Program - V1.0

mask to clear mode bits
user mode value

take a copy of the CPSR
clear the mode bits

- select new mode

write back the modified

CPSR

N B POWERED

70

Main features of the
ARM Instruction Set

* All instructions are 32 bits long.
* Most instructions execute in a single cycle.
* Every instruction can be conditionally executed.
* A load/store architecture
 Data processing instructions act only on registers
— Three operand format
— Combined ALU and shifter for high speed bit manipulation

 Specific memory access instructions with powerful auto-indexing
addressing modes.

— 32 bit and 8 bit data types
1 and also 16 bit data types on ARM Architecture v4.
— Flexible multiple register load and store instructions
* Instruction set extension via coprocessors

N B POWERED

The ARM Instruction Set - ARM University Program - V1.0 71

Thumb Instruction Set

* 16 bits.
* Without conditional execution.
* Simpler than the 16-bit counterpart.

* A Thumb instruction is expanded into its ARM instruction counterpart
by hardware.

* Instruction execution just like an ARM instruction.

N B POWERED

The ARM Instruction Set - ARM University Program - V1.0 72

Thumb Instruction Set Format

o
T
g
13
T4
15
16
r
e
s

15 -} 12 1= 11 10 1 | B [l [=] 5 & | = 1
o[o Orp Ciffsais Rs =
ololaol4 | 1| |I:l|:-| Rnicffsets Rs R
oo O Rd Ciffsats

[1 [O Re Rd
o]0 o | 1 op |H1 [Hz Re/Hs Rd/Hd
o laolol Rd Words
clalol1loe]e|o o Rb R
clalol1alu]ls]a R Rb R
R ENEREE CHifs=ts Rb Rid
1 [olololL Clifs=ts Rb =
1 [a]lol Rd Wiords

1 ol a]ol=sP Rd Wiords

1 lala]l1lolelolols S\Word 7
"HICHIERE 1 o[R Rlist

11]o]lofL Rb Rilist

1 1 0 Cond Soffsa=ts

1 lalola]1]1 | 1 | 1 Walusd

1 [a]la]lofo Ciffsatl 1

N ENENEREE CMfeet

15 fid 13 1Z 11 10 | B T [=] 5 & 3 =z 1

Mowve shifted register
Addisublracr

Movelcompara/ada
Ssubfract bmmediahes

AL U sperations

M register operations
Jbranch exchange

PC-redabhva load

Load'sfore willy registar
offset

Loadisfore sign-axiandag
byredhalfaord

Load'sfare with immeoiate
offsat

Loadistare halfwond
SP-rafative Ioad¥siore
Load address

Add offset to stack pointer
Pushvpap registers
Muitiple load'store
Canadiianal hranch
Software dnterrpd
Lnconoifional branch
Long bramch with fink

The ARM Instruction Set - ARM University Program - V1.0

73

