MANCHEStER
1824

The Thumb instruction set

The University
of Manchester

1 Qutline:

[] the Thumb programmers’ model
[] Thumb instructions
[] Thumb implementation

(] Thumb applications

[1 hands-on: writing Thumb assembly programs

© 2005 PEVE; Unit — ARM System Design

Thumb instruction set—v5 -1



MANCHEStER
1824

The Thumb instruction set

The University
of Manchester

1 Qutline:

[] the Thumb programmers’ model
[] Thumb instructions
[] Thumb implementation

(] Thumb applications

[1 hands-on: writing Thumb assembly programs

© 2005 PEVE; Unit — ARM System Design

Thumb instruction set —v5 - 2



.
What iIs Thumb?

O Thumb is:

The University
of Manchester

[] a compressed, 16-bit representation of a subset of the ARM
Instruction set

— primarily to increase code density
— also increases performance in some cases

1 Itis not a complete architecture

[ all ‘Thumb-aware’ cores also support the ARM instruction set

— therefore the Thumb architecture need only support common
functions

© 2005 PEVE; Unit — ARM System Design Thumb instruction set —v5 — 3



.
- The Thumb bit

2E 302987 765 4 0
BN | 74 (1Y unused | [F[T| mode

0 The ‘T’ bit in the CPSR controls the interpretation of
the instruction stream

[ switch from ARM to Thumb (and back) by executing BX
Instruction

[] exceptions also cause switch to ARM code

— return symmetrically to ARM or Thumb code

[] Note: do not change the T bit with MSR!

© 2005 PEVE; Unit — ARM System Design Thumb instruction set —v5 -4



1824
%’% ro N
28 rl
=5 r2
r3
r4
)
ré

3|
A

ro

r10

ril

r12

SP (r13)

© 2005 PEVE; Unit — ARM System Design

Lo registers

Hi registers

The Thumb programmers’ model

shaded registers have
restricted access

Thumb instruction set —v5 -5



,
The Thumb programmers’ model

1 Thumb reqgister use:

The University
of Manchester

[ rO - r7 are general purpose registers
[ r13 is used implicitly as a stack pointer
— In ARM code this is a software convention
[ r14 is used as the link register
— Implicitly, as in the ARM instruction set
[] a few instructions can access r8 - r15

[] the CPSR flags are set by data processing instructions &
control conditional branches

© 2005 PEVE; Unit — ARM System Design Thumb instruction set —v5 — 6



,
The Thumb programmers’ model

1 Thumb-ARM similarities:

The University
of Manchester

[ load-store architecture
— with data processing, data transfer and control flow instructions
[] support for 8-bit byte, 16-bit half-word and 32-bit data types

— half-words are aligned on 2-byte boundaries
— words are aligned on 4-byte boundaries

[] 32-bit unsegmented memory

© 2005 PEVE; Unit — ARM System Design Thumb instruction set —v5 — 7



,
The Thumb programmers’ model

The University
of Manchester

[ Thumb-ARM differences:

[] most Thumb instructions are unconditional
— all ARM instructions are conditional

[] most Thumb instructions use a 2-address format
— most ARM instructions use a 3-address format

(] Thumb instruction formats are less regular
— aresult of the denser encoding

[] Thumb has explicit shift opcodes

— ARM implements shifts as operand modifiers

© 2005 PEVE; Unit — ARM System Design Thumb instruction set —v5 — 8



MANCHEStER
1824

The Thumb instruction set

The University
of Manchester

1 Qutline:

[] the Thumb programmers’ model
[] Thumb instructions
[] Thumb implementation

(] Thumb applications

[1 hands-on: writing Thumb assembly programs

© 2005 PEVE; Unit — ARM System Design

Thumb instruction set —v5 -9



MANCHEStER
1824

Thumb branch instructions

The University
of Manchester

15 12 11 8 7 0

|1 10 1‘ cond ‘ 8-bit offset | (1) B<cond> <label>
15 1211 0

|1 110 O‘ 11-bit offset | (2) B <label>

15 1211 10 0

|1 11 1‘H‘ 11-bit offset | (3) BL <label>

15 12 11 765 32 0

|010001110‘H‘ OOOl (4) BX Rm

© 2005 PEVE; Unit — ARM System Design Thumb instruction set — v5 — 10



nstruct
Thumb branch instructions

1 These are similar to ARM instructions except:

The University
of Manchester

[1 offsets are scaled to half-word, not word
[] range is reduced to fit into 16 bits

[] BL works in two stages:

H=0: LR := PC + signextend(offset << 12)

H=1: PC := LR + (offset << 1)
LR := oldPC + 3

[] the assembler generates both halves

[] LR bit[0] is set to facilitate return via BX

© 2005 PEVE; Unit — ARM System Design Thumb instruction set — v5 — 11



nstruct
Thumb branch instructions

J Branch and eXchange (BX)

The University
of Manchester

[] to return to ARM or Thumb caller:

BX Ir , replaces MOV pc, Ir
1 Subroutine calls

[ later ARMs support BLX instruction
[] to synthesize BLX or earlier ARM:

ADR rO, subr + 1 - “+ 1” to enter Thumb mode
ADR Ir, return : save return address
BX ro - calls subr

return ... ;

© 2005 PEVE; Unit — ARM System Design Thumb instruction set — v5 — 12



MANCHEStER
1824

Thumb software interrupts

15 8 1 0

|1 101111 1‘8-bit immediate|

1 The Thumb SWI operates exactly like the ARM SWI

The University
of Manchester

[] the (interpreted) immediate is just 8 bits

— Thumb Angel SWI uses value 0xAB
r0 call value is exactly as in ARM code

(] the SWI handler is entered in ARM code

— the return automatically selects ARM or Thumb

© 2005 PEVE; Unit — ARM System Design Thumb instruction set — v5 — 13



MANCHEStER
1824

Thumb data processing instructions

The University
of Manchester

15 098 65 32 0

|O 0011 O‘A‘ Rm ‘ Rn ‘ Rd | (1) ADD|SUB Rd,Rn,Rm

15 098 65 32 0

|O 0011 1‘A‘imm3‘ Rn ‘ Rd | (2) ADD|SUB Rd,Rn,#imm3

15 121110 87 0

|O 0 1\ op \Rd/Rn\ Imma38 | (3) MOV|CMP|ADD|SUB Rd/Rn,#imm8

15 13121110 65 32 0
000|o #sh (4) LSL|LSR|ASR Rd,Rn,#shift

© 2005 PEVE; Unit — ARM System Design Thumb instruction set — v5 — 14



MANCHEStER
1824

Thumb data processing instructions
15 10 9 65 32 0

|O 1000 O‘ op ‘Rm/Rs‘Rd/Rn] (5) <Op> Rd/Rn,RM/Rs

15 098765 32 0

|O 1000 1\ op \DM Rm \Rd/Rn| (6) ADD|CMP|MOV Rd/Rn,Rm

15 121110 8 7 0

|1 01 O\R\ Rd \ Imma38 | (7) ADD Rd,SP|PC,#imm8

15 8 1 6 0

|1 011000 O‘A‘ Imm?7 | (8) ADD|SUB SP,SP,#imm7

[] In case (6):

The University
of Manchester

— MOV does not affect the flags
(it can be distinguished using the mnemonic CPY after v6)

© 2005 PEVE; Unit — ARM System Design Thumb instruction set — v5 — 15



Thumb data processing instructions

1 Notes:

The University
of Manchester

[1 in Thumb code shift operations are separate from general
ALU functions

— in ARM code a shift can be combined with an
[] ALU function in a single instruction

[] all data processing operations on the ‘Lo’ registers set the
condition codes

— those on the ‘Hi’ reqgisters do not, apart from CMP which only
changes the condition codes

© 2005 PEVE; Unit — ARM System Design Thumb instruction set — v5 — 16



MANCHEStER
1824

Thumb single reqister data transfers

The University
of Manchester

15 13121110 65 32 0
O011[B|L|] off5 Rn | Rd (1) LDR|STR{B} Rd,[Rn,#0ff5]

15 13121110 65 32 0
1 000[L|] off5 Rn | Rd (2) LDRH|STRH Rd,[Rn #0ff5]

15 1211 98 65 32 0
0101f o Rm| Rn | Rd (3) LDR|STR{SHH|B} Rd,[Rn,Rm]

15 1110 8 7 0
|O 100 1\ Rd \ off8 | (4) LDR Rd,[PC,#off8]
15 121110 8 7 0

|1 00 1‘L‘ Rd ‘ off8 I (5) LDR|STR Rd,[SP,#0ff8]

© 2005 PEVE; Unit — ARM System Design Thumb instruction set — v5 — 17



MANCHEStER
1824

Thumb multiple register
data transfers

The University
of Manchester

15 121110 8 7 0
|1 10 O‘L‘ RN ‘ reg. list | (1) LDMIA|STMIA Rnl,
15 109 8§ 7 0

101111|LIR reg. list (2) POP|PUSH {<reqg list>{,R}}

[] These map directly onto the ARM forms:

PUSH: STMFD SP!, {<regs>{, Ir}}
POP: LDMFD SP!, {<regs>{, pc}}

— note restrictions on available addressing modes compared with
ARM code

© 2005 PEVE; Unit — ARM System Design Thumb instruction set — v5 — 18



. -
Unique Thumb mnemonics

The University
of Manchester

1 Most significant differences from ARM:

PUSH : STMFD sp!{&}

POP  ;LDMFD sp!{&}

NEG  :RSB Rd, Rs, #0

LSR  :MOV Rd, Rd, LSR <Rs | #5>
ASR  ; MOV Rd, Rd, ASR <Rs | #5>
LSL  ; MOV Rd, Rd, LSL <Rs | #5>
ROR ; MOV Rd, Rd, ROR Rs

© 2005 PEVE; Unit — ARM System Design Thumb instruction set — v5 — 19



MANCHEStER
1824

Newer Thumb instructions (from v5)

1 BLX works in two stages; (first is same as BL)

15 12 11 10 10
1110|1 10-bit offset 0 (1) BLX <label>

The University
of Manchester

H=0: LR := PC + signextend(offset << 12)

H=1: PC := (LR + (offset << 2)) AND FFFFFFFC
LR :=oldPC + 3
Tflag:=0

[] There Is also a register-based BLX

15 [ 32 0

|010001111‘ Rm ‘OOO' (2) BLX Rm

0 BKPT (Breakpoint)

© 2005 PEVE; Unit — ARM System Design Thumb instruction set — v5 — 20




nstruct
Newer Thumb instructions (from v6)

] CPY

— Mnemonic allowing register moves without affecting flags

[] SXTB/SXTH/UXTB/UXTH

— Sign extension (no shifts)
[ REV/IREV16/REVSH

— Byte swaps
[ SETEND
[ CPSIE/CPSID

— Interrupt enable/disables (no mode changes)

The University
of Manchester

More about these in later ARM session.

© 2005 PEVE; Unit — ARM System Design Thumb instruction set — v5 — 21



nterwork
= ARM/Thumb interworking

1 BX (Branch eXchange) moves to the mode specified by
the address LSB (in register)

The University
of Manchester

1 BLX (Branch with Link and eXchange) moves to the
other mode (common case)

[] the LSB of LR retains the ‘parent’ mode
[ BLX Rm can move to either mode (like BX)

1 The ‘correct’ subroutine return Is:

BX LR

[1 the routine can then be called from both ARM and Thumb
code

© 2005 PEVE; Unit — ARM System Design Thumb instruction set — v5 — 22



nterwork
= ARM/Thumb interworking

] Calling procedures in other instruction set

[ ARM v5 or later
BLX procedure ; ARM or Thumb
L1 ARM vAT

— from ARM

ADR Ir, return_addr ;
ADR 10, procedure +1 ;+1sets‘T

The University
of Manchester

BX r0 :
return_addr
— from Thumb
LDR rO, =procedure ;
MOV Ir, pc ; ‘here’ + 4

BX ro :

© 2005 PEVE; Unit — ARM System Design Thumb instruction set — v5 — 23



MANCHEStER
1824

The Thumb instruction set

The University
of Manchester

1 Qutline:

[] the Thumb programmers’ model
[] Thumb instructions
[] Thumb implementation

(] Thumb applications

[1 hands-on: writing Thumb assembly programs

© 2005 PEVE; Unit — ARM System Design

Thumb instruction set —v5 — 24



.
Thumb decoding

0 The original Thumb implementation translated the
opcodes into ARM opcodes.

The University
of Manchester

[1 This means the effect of Thumb and ARM instructions are the
same

— Thumb is more restricted (e.g. smaller offsets/immediates)
— One or two new functions (e.g. BL details)

] Later implementations decode Thumb directly

© 2005 PEVE; Unit — ARM System Design Thumb instruction set — v5 — 25



Thumb - ARM
instruction mapping
15 121110 8 7 (0
|O 0 1‘ op ‘Rd/Rn‘ Imm8 |ADD Rd, #imm8
always C_ K )

condition

Y l Y Y

ma jor opcode,
format 3: MOV/
CMP/ADD/SUB
with immediate

Y Y Y Yy oy vy l

31 28 21 26 25 24 212019 16 15 1211 6 T 0

111 O‘O 0‘1‘0 10 0‘1‘0 Rd ‘O Rd ‘O 00 O‘ Imm3 I

© 2005 PEVE; Unit — ARM System Design Thumb instruction set — v5 — 26

minor opcode destination
denoting ADD and source
& set CC register

Zero immediate
shift value




MANCHEStER
1824

The Thumb instruction set

The University
of Manchester

1 Qutline:

[] the Thumb programmer’s model
[] Thumb instructions
[] Thumb implementation

(] Thumb applications

[1 hands-on: writing Thumb assembly programs

© 2005 PEVE; Unit — ARM System Design

Thumb instruction set — v5 — 27



MANCHEStER
1824

Thumb applications

The University
of Manchester

1 Thumb code properties:

[1 70% of the size of ARM code

— 30% less external memory power
— 40% more instructions

(] With 32-bit memory:

— ARM code is 40% faster than Thumb code
(] With 16-bit memory:

— Thumb code is 45% faster than ARM code

© 2005 PEVE; Unit — ARM System Design

Thumb instruction set — v5 — 28



cat
Thumb applications

] For the best performance:

The University
of Manchester

[] use 32-bit memory and ARM code
] For best cost and power-efficiency:
[] use 16-bit memory and Thumb code
1 In a typical embedded system:

[] use ARM code in 32-bit on-chip memory for small speed-
critical routines

[] use Thumb code in 16-bit off-chip memory for large non-
critical control routines

© 2005 PEVE; Unit — ARM System Design Thumb instruction set — v5 — 29



MANCHEStER
1824

Hands-on: writing Thumb
assembly programs

The University
of Manchester

1 Explore further the ARM software development tools

(] Write Thumb assembly programs

[] Check that they work as expected

(] Follow the ‘Hands-on’ instructions

© 2005 PEVE; Unit — ARM System Design Thumb instruction set — v5 — 30



	The Thumb instruction set
	Outline:
	the Thumb programmers’ model
	Thumb instructions
	Thumb implementation
	Thumb applications
	hands-on: writing Thumb assembly programs


	The Thumb instruction set
	Outline:
	the Thumb programmers’ model
	Thumb instructions
	Thumb implementation
	Thumb applications
	hands-on: writing Thumb assembly programs



	What is Thumb?
	Thumb is:
	a compressed, 16-bit representation of a subset of the ARM instruction set
	– primarily to increase code density
	– also increases performance in some cases


	It is not a complete architecture
	all ‘Thumb-aware’ cores also support the ARM instruction set
	– therefore the Thumb architecture need only support common functions



	The Thumb bit
	The ‘T’ bit in the CPSR controls the interpretation of the instruction stream
	switch from ARM to Thumb (and back) by executing BX instruction
	exceptions also cause switch to ARM code
	– return symmetrically to ARM or Thumb code

	Note: do not change the T bit with MSR!


	     The Thumb programmers’ model
	     The Thumb programmers’ model
	Thumb register use:
	r0 - r7 are general purpose registers
	r13 is used implicitly as a stack pointer
	– in ARM code this is a software convention

	r14 is used as the link register
	– implicitly, as in the ARM instruction set

	a few instructions can access r8 - r15
	the CPSR flags are set by data processing instructions & control conditional branches


	     The Thumb programmers’ model
	Thumb-ARM similarities:
	load-store architecture
	– with data processing, data transfer and control flow instructions

	support for 8-bit byte, 16-bit half-word and 32-bit data types
	– half-words are aligned on 2-byte boundaries
	– words are aligned on 4-byte boundaries

	32-bit unsegmented memory


	     The Thumb programmers’ model
	Thumb-ARM differences:
	most Thumb instructions are unconditional
	– all ARM instructions are conditional

	most Thumb instructions use a 2-address format
	– most ARM instructions use a 3-address format

	Thumb instruction formats are less regular
	– a result of the denser encoding

	Thumb has explicit shift opcodes
	– ARM implements shifts as operand modifiers



	The Thumb instruction set
	Outline:
	the Thumb programmers’ model
	Thumb instructions
	Thumb implementation
	Thumb applications
	hands-on: writing Thumb assembly programs



	Thumb branch instructions
	Thumb branch instructions
	These are similar to ARM instructions except:
	offsets are scaled to half-word, not word
	range is reduced to fit into 16 bits
	BL works in two stages:
	H=0: LR := PC + signextend(offset << 12)
	H=1: PC := LR + (offset << 1) LR := oldPC + 3

	the assembler generates both halves
	LR bit[0] is set to facilitate return via BX


	Thumb branch instructions
	Branch and eXchange (BX)
	to return to ARM or Thumb caller:
	BX lr ; replaces MOV pc, lr


	Subroutine calls
	later ARMs support BLX instruction
	to synthesize BLX or earlier ARM:
	ADR r0, subr + 1 ; “+ 1” to enter Thumb mode ADR lr, return ; save return address BX r0 ; calls s...



	Thumb software interrupts
	The Thumb SWI operates exactly like the ARM SWI
	the (interpreted) immediate is just 8 bits
	– Thumb Angel SWI uses value 0xAB r0 call value is exactly as in ARM code

	the SWI handler is entered in ARM code
	– the return automatically selects ARM or Thumb



	          Thumb data processing instructions
	          Thumb data processing instructions
	In case (6):
	– MOV does not affect the flags (it can be distinguished using the mnemonic CPY after v6)


	          Thumb data processing instructions
	Notes:
	in Thumb code shift operations are separate from general ALU functions
	– in ARM code a shift can be combined with an

	ALU function in a single instruction
	all data processing operations on the ‘Lo’ registers set the condition codes
	– those on the ‘Hi’ registers do not, apart from CMP which only changes the condition codes



	          Thumb single register data transfers
	Thumb multiple register data transfers
	These map directly onto the ARM forms:
	PUSH: STMFD SP!, {<regs>{, lr}}
	POP: LDMFD SP!, {<regs>{, pc}}
	– note restrictions on available addressing modes compared with ARM code



	Unique Thumb mnemonics
	Most significant differences from ARM:
	PUSH ; STMFD sp!,{&}
	POP ; LDMFD sp!,{&}
	NEG ; RSB Rd, Rs, #0
	LSR ; MOV Rd, Rd, LSR <Rs | #5>
	ASR ; MOV Rd, Rd, ASR <Rs | #5>
	LSL ; MOV Rd, Rd, LSL <Rs | #5>
	ROR ; MOV Rd, Rd, ROR Rs


	          Newer Thumb instructions (from v5)
	BLX works in two stages; (first is same as BL)
	H=0: LR := PC + signextend(offset << 12)
	H=1: PC := (LR + (offset << 2)) AND FFFFFFFC LR := oldPC + 3 T flag := 0
	There is also a register-based BLX

	BKPT (Breakpoint)

	          Newer Thumb instructions (from v6)
	CPY
	– Mnemonic allowing register moves without affecting flags

	SXTB/SXTH/UXTB/UXTH
	– Sign extension (no shifts)

	REV/REV16/REVSH
	– Byte swaps

	SETEND
	CPSIE/CPSID
	– Interrupt enable/disables (no mode changes)

	More about these in later ARM session.

	ARM/Thumb interworking
	BX (Branch eXchange) moves to the mode specified by the address LSB (in register)
	BLX (Branch with Link and eXchange) moves to the other mode (common case)
	the LSB of LR retains the ‘parent’ mode
	BLX Rm can move to either mode (like BX)

	The ‘correct’ subroutine return is:
	BX LR
	the routine can then be called from both ARM and Thumb code


	ARM/Thumb interworking
	Calling procedures in other instruction set
	ARM v5 or later
	BLX procedure ; ARM or Thumb

	ARM v4T
	– from ARM
	ADR lr, return_addr ; ADR r0, procedure + 1 ; + 1 sets ‘T’ BX r0 ; return_addr ...
	– from Thumb

	LDR r0, =procedure ; MOV lr, pc ; ‘here’ + 4 BX r0 ; ...



	The Thumb instruction set
	Outline:
	the Thumb programmers’ model
	Thumb instructions
	Thumb implementation
	Thumb applications
	hands-on: writing Thumb assembly programs



	Thumb decoding
	The original Thumb implementation translated the opcodes into ARM opcodes.
	This means the effect of Thumb and ARM instructions are the same
	– Thumb is more restricted (e.g. smaller offsets/immediates)
	– One or two new functions (e.g. BL details)


	Later implementations decode Thumb directly

	Thumb - ARM instruction mapping
	The Thumb instruction set
	Outline:
	the Thumb programmer’s model
	Thumb instructions
	Thumb implementation
	Thumb applications
	hands-on: writing Thumb assembly programs



	Thumb applications
	Thumb code properties:
	70% of the size of ARM code
	– 30% less external memory power
	– 40% more instructions

	With 32-bit memory:
	– ARM code is 40% faster than Thumb code

	With 16-bit memory:
	– Thumb code is 45% faster than ARM code



	Thumb applications
	For the best performance:
	use 32-bit memory and ARM code

	For best cost and power-efficiency:
	use 16-bit memory and Thumb code

	In a typical embedded system:
	use ARM code in 32-bit on-chip memory for small speed- critical routines
	use Thumb code in 16-bit off-chip memory for large non- critical control routines


	Hands-on: writing Thumb assembly programs
	Explore further the ARM software development tools
	Write Thumb assembly programs
	Check that they work as expected
	Follow the ‘Hands-on’ instructions



