
Multiple data transfer instructions

ARM also supports multiple loads and stores:

General syntax:

op<address-mode>{cond}< <rn>{!}, <register-list>{^}

• op : ldm, stm

• address-mode:

ia – Increment address after each transfer

ib – Increment address before each transfer.

da – Decrement address after each transfer

db – Decrement address before each transfer

fd – full descending stack

ed – empty descending stack

fa – full ascending stack

ea – empty ascending stack.
1

Multiple data transfer instructions

• cond is an optional condition code

• rn is the base register containing the initial memory
address for the transfer.

• ! is an optional suffix.
- If ! is present, the final address is written back into

rn.
- If the base register is in the register-list, then you

must not use the writeback option.

2

Multiple data transfer instructions

reg-list

• a list of registers to be loaded or stored.

• can be a comma-separated list or an rx-ry range.

• may contain any or all of r0 - r15
• the registers are always loaded in order regardless

to how the registers are ordered in the list.
• for both the ldm and stm instructions, reg-list must

not contain the sp
• for ldm, reg-list must not contain the PC if it

contains the lr
• for stm, reg-list must not contain the lr if it contains

the pc

3

Multiple data transfer instructions

• ^ is an optional suffix. Do NOT use it in User mode or
System mode.
- forces processor to transfer the saved program

status register (SPSR) into the current program
status register (CPSR) at the same time, saving us
an instruction

- if op is LDM and register-list contains the pc, the
CPSR is restored from the SPSR

- otherwise, data is transferred into or out of the User
mode registers instead of the current mode
registers.

4

Multiple data transfer instructions

Example of ldmia – load, increment after

ldmia r9, {r0-r3} @ register 9 holds the

@ base address. “ia” says

@ increment the base addr

@ after each value has

@ been loaded from memory

5

Multiple data transfer instructions

Example of ldmia – load, increment after

ldmia r9, {r0-r3} @ register 9 holds the

@ base address

This has the same effect as four separate ldr instructions, or

ldr r0, [r9]

ldr r1, [r9, #4]

ldr r2, [r9, #8]

ldr r3, [r9, #12]

Note: at the end of the ldmia instruction, register r9 has not

been changed. If you wanted to change r9, you could simply
use

ldmia r9!, {r0-r3, r12}

6

Multiple register data transfer instuctions

ldmia – Example 2

ldmia r9, {r0-r3, r12}

• Load words addressed by r9 into r0, r1, r2, r3, and r12

• Increment r9 after each load.

Example 3

ldmia r9, {r5, r3, r0-r2, r14}

• load words addressed by r9 into registers r0, r1, r2, r3,
r5, and r14.

• Increment r9 after each load.

• ldmib, ldmda, ldmdb work similar to ldmia

• Stores work in an analogous manner to load instructions

7

PUSH and POP

Note:
push is a synonym for stmdb sp!, reg-list

pop is a synonym for ldmia sp!, reg-list

Note:
ldmfd is a synonym for ldmia

stmfd is a synonym for stmdb

8

Multiple register data transfer instuctions

Common usage of multiple data transfer instructions

• Stack

• Function calls

• Context switches

• Exception handlers

9

Multiple register data transfer instuctions

Stack

• When making nested subroutine calls, we need to store
the current state of the processor.

• The multiple data transfer instructions provide a
mechanism for storing state on the runtime stack (pointed
to by the stack pointer, r13 or sp)

stack addressing:

– stacks can ascend or descend memory

– stacks can be full or empty

– ARM multiple register transfers support all forms of the

stack

10

Multiple register data transfer instructions

Stack

• Ascending stack: grows up

• Descending stack: grows down

A stack pointer (sp) holds the address of the current top of
the stack

Full stack: sp is pointing to the last valid data item
pushed onto the stack

Empty stack: sp is pointing to the vacant slot where the
next data item will be placed

11

Multiple register data transfer instructions

Stack Processing

ARM support for all four forms of stacks

• Full ascending (FA): grows up; stack pointer points to
the highest address containing a valid data item

• Empty ascending (EA): grows up; stack pointer points
to the first empty location

• Full descending (FD): grows down; stack pointer points
to the lowest address containing a valid data item

• Empty descending (ED): grows down; stack pointer
points to the first empty location below the stack

12

Load and Store Multiples

IA

r1 Increasing

Address

r4

r0

r1

r4

r0

r1

r4

r0 r1

r4

r0

r10

IB DA DB

LDMxx r10, {r0,r1,r4}

STMxx r10, {r0,r1,r4}

Base Register (Rb)

Stack -- Last in first out memory

• Multiple store / load

– stmed

– ldmed

Stack example

Address (H) Data

4000 0488 :

:

4000 0008 :

4000 0004 :

4000 0000 :

14

Stack pointer (r13)

Stack push operation: stmed

subr1:

stmed r13!, {r0-r2, r14} @ push work & link registers

@ stores data on stack and decreases r13

(r1)

(r2)

(r14)

when return from SUB1
high

low

r13'

(r0)

r1

r2

r14

on entry to SUB1

low
r13'

r0

highr13

r13

SP moves

down

STMEDr13!, {r0-r2, r14} LDMED r13!, {r0-r2, r14}

15

Old

New

“Empty” means Stack Pointer is

pointing to an empty location

Old

New

Store multiple empty descending instruction

Stack pop operation: ldmed

ldmed r13!, {r0-r2, r14} @ pop work & link registers
@ restores data to registers
@ and increases r13

(r1)

(r2)

(r14)

when return from SUB1
high

low

r13'

(r0)

r1

r2

r14

on entry to SUB1

low
r13'

r0

highr13

r13

SP moves

down

STMEDr13!, {r0-r2, r14} LDMED r13!, {r0-r2, r14}

16

New

Old

Old

New

Load multiple empty descending

Stack push operation: stmfd

17

STMFD r13!, {r4-r7} – Push R4,R5,R6 and R7 onto the stack.

Stack pop operation: ldmed

18

LDMFD r13!, {r4-r7} – Pop R4,R5,R6 and R7 from the stack.

