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.
What iIs Thumb?

O Thumb is:

The University
of Manchester

[] a compressed, 16-bit representation of a subset of the ARM
Instruction set

— primarily to increase code density
— also increases performance in some cases

1 Itis not a complete architecture

[ all ‘Thumb-aware’ cores also support the ARM instruction set

— therefore the Thumb architecture need only support common
functions
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.
- The Thumb bit

2E 302987 765 4 0
BN | 74 (1Y unused | [F[T| mode

0 The ‘T’ bit in the CPSR controls the interpretation of
the instruction stream

[ switch from ARM to Thumb (and back) by executing BX
Instruction

[] exceptions also cause switch to ARM code

— return symmetrically to ARM or Thumb code

[] Note: do not change the T bit with MSR!
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,
The Thumb programmers’ model

1 Thumb reqgister use:

The University
of Manchester

[ rO - r7 are general purpose registers
[ r13 is used implicitly as a stack pointer
— In ARM code this is a software convention
[ r14 is used as the link register
— Implicitly, as in the ARM instruction set
[] a few instructions can access r8 - r15

[] the CPSR flags are set by data processing instructions &
control conditional branches
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,
The Thumb programmers’ model

1 Thumb-ARM similarities:

The University
of Manchester

[ load-store architecture
— with data processing, data transfer and control flow instructions
[] support for 8-bit byte, 16-bit half-word and 32-bit data types

— half-words are aligned on 2-byte boundaries
— words are aligned on 4-byte boundaries

[] 32-bit unsegmented memory
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,
The Thumb programmers’ model

The University
of Manchester

[ Thumb-ARM differences:

[] most Thumb instructions are unconditional
— all ARM instructions are conditional

[] most Thumb instructions use a 2-address format
— most ARM instructions use a 3-address format

(] Thumb instruction formats are less regular
— aresult of the denser encoding

[] Thumb has explicit shift opcodes

— ARM implements shifts as operand modifiers
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Thumb branch instructions

The University
of Manchester

15 12 11 8 7 0

|1 10 1‘ cond ‘ 8-bit offset | (1) B<cond> <label>
15 1211 0

|1 110 O‘ 11-bit offset | (2) B <label>

15 1211 10 0

|1 11 1‘H‘ 11-bit offset | (3) BL <label>

15 12 11 765 32 0

|010001110‘H‘ OOOl (4) BX Rm
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nstruct
Thumb branch instructions

1 These are similar to ARM instructions except:

The University
of Manchester

[1 offsets are scaled to half-word, not word
[] range is reduced to fit into 16 bits

[] BL works in two stages:

H=0: LR := PC + signextend(offset << 12)

H=1: PC := LR + (offset << 1)
LR := oldPC + 3

[] the assembler generates both halves

[] LR bit[0] is set to facilitate return via BX
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nstruct
Thumb branch instructions

J Branch and eXchange (BX)

The University
of Manchester

[] to return to ARM or Thumb caller:

BX Ir , replaces MOV pc, Ir
1 Subroutine calls

[ later ARMs support BLX instruction
[] to synthesize BLX or earlier ARM:

ADR rO, subr + 1 - “+ 1” to enter Thumb mode
ADR Ir, return : save return address
BX ro - calls subr

return ... ;
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Thumb software interrupts

15 8 1 0

|1 101111 1‘8-bit immediate|

1 The Thumb SWI operates exactly like the ARM SWI

The University
of Manchester

[] the (interpreted) immediate is just 8 bits

— Thumb Angel SWI uses value 0xAB
r0 call value is exactly as in ARM code

(] the SWI handler is entered in ARM code

— the return automatically selects ARM or Thumb
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Thumb data processing instructions

The University
of Manchester

15 098 65 32 0

|O 0011 O‘A‘ Rm ‘ Rn ‘ Rd | (1) ADD|SUB Rd,Rn,Rm

15 098 65 32 0

|O 0011 1‘A‘imm3‘ Rn ‘ Rd | (2) ADD|SUB Rd,Rn,#imm3

15 121110 87 0

|O 0 1\ op \Rd/Rn\ Imma38 | (3) MOV|CMP|ADD|SUB Rd/Rn,#imm8

15 13121110 65 32 0
000|o #sh (4) LSL|LSR|ASR Rd,Rn,#shift
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Thumb data processing instructions
15 10 9 65 32 0

|O 1000 O‘ op ‘Rm/Rs‘Rd/Rn] (5) <Op> Rd/Rn,RM/Rs

15 098765 32 0

|O 1000 1\ op \DM Rm \Rd/Rn| (6) ADD|CMP|MOV Rd/Rn,Rm

15 121110 8 7 0

|1 01 O\R\ Rd \ Imma38 | (7) ADD Rd,SP|PC,#imm8

15 8 1 6 0

|1 011000 O‘A‘ Imm?7 | (8) ADD|SUB SP,SP,#imm7

[] In case (6):

The University
of Manchester

— MOV does not affect the flags
(it can be distinguished using the mnemonic CPY after v6)
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Thumb data processing instructions

1 Notes:

The University
of Manchester

[1 in Thumb code shift operations are separate from general
ALU functions

— in ARM code a shift can be combined with an
[] ALU function in a single instruction

[] all data processing operations on the ‘Lo’ registers set the
condition codes

— those on the ‘Hi’ reqgisters do not, apart from CMP which only
changes the condition codes
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Thumb single reqister data transfers

The University
of Manchester

15 13121110 65 32 0
O011[B|L|] off5 Rn | Rd (1) LDR|STR{B} Rd,[Rn,#0ff5]

15 13121110 65 32 0
1 000[L|] off5 Rn | Rd (2) LDRH|STRH Rd,[Rn #0ff5]

15 1211 98 65 32 0
0101f o Rm| Rn | Rd (3) LDR|STR{SHH|B} Rd,[Rn,Rm]

15 1110 8 7 0
|O 100 1\ Rd \ off8 | (4) LDR Rd,[PC,#off8]
15 121110 8 7 0

|1 00 1‘L‘ Rd ‘ off8 I (5) LDR|STR Rd,[SP,#0ff8]
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Thumb multiple register
data transfers

The University
of Manchester

15 121110 8 7 0
|1 10 O‘L‘ RN ‘ reg. list | (1) LDMIA|STMIA Rnl,
15 109 8§ 7 0

101111|LIR reg. list (2) POP|PUSH {<reqg list>{,R}}

[] These map directly onto the ARM forms:

PUSH: STMFD SP!, {<regs>{, Ir}}
POP: LDMFD SP!, {<regs>{, pc}}

— note restrictions on available addressing modes compared with
ARM code
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Unique Thumb mnemonics

The University
of Manchester

1 Most significant differences from ARM:

PUSH : STMFD sp!{&}

POP  ;LDMFD sp!{&}

NEG  :RSB Rd, Rs, #0

LSR  :MOV Rd, Rd, LSR <Rs | #5>
ASR  ; MOV Rd, Rd, ASR <Rs | #5>
LSL  ; MOV Rd, Rd, LSL <Rs | #5>
ROR ; MOV Rd, Rd, ROR Rs
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Newer Thumb instructions (from v5)

1 BLX works in two stages; (first is same as BL)

15 12 11 10 10
1110|1 10-bit offset 0 (1) BLX <label>

The University
of Manchester

H=0: LR := PC + signextend(offset << 12)

H=1: PC := (LR + (offset << 2)) AND FFFFFFFC
LR :=oldPC + 3
Tflag:=0

[] There Is also a register-based BLX

15 [ 32 0

|010001111‘ Rm ‘OOO' (2) BLX Rm

0 BKPT (Breakpoint)
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nstruct
Newer Thumb instructions (from v6)

] CPY

— Mnemonic allowing register moves without affecting flags

[] SXTB/SXTH/UXTB/UXTH

— Sign extension (no shifts)
[ REV/IREV16/REVSH

— Byte swaps
[ SETEND
[ CPSIE/CPSID

— Interrupt enable/disables (no mode changes)

The University
of Manchester

More about these in later ARM session.
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nterwork
= ARM/Thumb interworking

1 BX (Branch eXchange) moves to the mode specified by
the address LSB (in register)

The University
of Manchester

1 BLX (Branch with Link and eXchange) moves to the
other mode (common case)

[] the LSB of LR retains the ‘parent’ mode
[ BLX Rm can move to either mode (like BX)

1 The ‘correct’ subroutine return Is:

BX LR

[1 the routine can then be called from both ARM and Thumb
code

© 2005 PEVE; Unit — ARM System Design Thumb instruction set — v5 — 22



nterwork
= ARM/Thumb interworking

] Calling procedures in other instruction set

[ ARM v5 or later
BLX procedure ; ARM or Thumb
L1 ARM vAT

— from ARM

ADR Ir, return_addr ;
ADR 10, procedure +1 ;+1sets‘T

The University
of Manchester

BX r0 :
return_addr
— from Thumb
LDR rO, =procedure ;
MOV Ir, pc ; ‘here’ + 4

BX ro :

© 2005 PEVE; Unit — ARM System Design Thumb instruction set — v5 — 23
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.
Thumb decoding

0 The original Thumb implementation translated the
opcodes into ARM opcodes.

The University
of Manchester

[1 This means the effect of Thumb and ARM instructions are the
same

— Thumb is more restricted (e.g. smaller offsets/immediates)
— One or two new functions (e.g. BL details)

] Later implementations decode Thumb directly
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Thumb - ARM
instruction mapping
15 121110 8 7 (0
|O 0 1‘ op ‘Rd/Rn‘ Imm8 |ADD Rd, #imm8
always C_ K )

condition

Y l Y Y

ma jor opcode,
format 3: MOV/
CMP/ADD/SUB
with immediate

Y Y Y Yy oy vy l

31 28 21 26 25 24 212019 16 15 1211 6 T 0

111 O‘O 0‘1‘0 10 0‘1‘0 Rd ‘O Rd ‘O 00 O‘ Imm3 I
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Thumb applications

The University
of Manchester

1 Thumb code properties:

[1 70% of the size of ARM code

— 30% less external memory power
— 40% more instructions

(] With 32-bit memory:

— ARM code is 40% faster than Thumb code
(] With 16-bit memory:

— Thumb code is 45% faster than ARM code

© 2005 PEVE; Unit — ARM System Design
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cat
Thumb applications

] For the best performance:

The University
of Manchester

[] use 32-bit memory and ARM code
] For best cost and power-efficiency:
[] use 16-bit memory and Thumb code
1 In a typical embedded system:

[] use ARM code in 32-bit on-chip memory for small speed-
critical routines

[] use Thumb code in 16-bit off-chip memory for large non-
critical control routines
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Hands-on: writing Thumb
assembly programs

The University
of Manchester

1 Explore further the ARM software development tools

(] Write Thumb assembly programs

[] Check that they work as expected

(] Follow the ‘Hands-on’ instructions
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	a compressed, 16-bit representation of a subset of the ARM instruction set
	– primarily to increase code density
	– also increases performance in some cases


	It is not a complete architecture
	all ‘Thumb-aware’ cores also support the ARM instruction set
	– therefore the Thumb architecture need only support common functions



	The Thumb bit
	The ‘T’ bit in the CPSR controls the interpretation of the instruction stream
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	exceptions also cause switch to ARM code
	– return symmetrically to ARM or Thumb code

	Note: do not change the T bit with MSR!
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	     The Thumb programmers’ model
	Thumb register use:
	r0 - r7 are general purpose registers
	r13 is used implicitly as a stack pointer
	– in ARM code this is a software convention

	r14 is used as the link register
	– implicitly, as in the ARM instruction set

	a few instructions can access r8 - r15
	the CPSR flags are set by data processing instructions & control conditional branches


	     The Thumb programmers’ model
	Thumb-ARM similarities:
	load-store architecture
	– with data processing, data transfer and control flow instructions

	support for 8-bit byte, 16-bit half-word and 32-bit data types
	– half-words are aligned on 2-byte boundaries
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	32-bit unsegmented memory


	     The Thumb programmers’ model
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	most Thumb instructions are unconditional
	– all ARM instructions are conditional
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	Thumb branch instructions
	Thumb branch instructions
	These are similar to ARM instructions except:
	offsets are scaled to half-word, not word
	range is reduced to fit into 16 bits
	BL works in two stages:
	H=0: LR := PC + signextend(offset << 12)
	H=1: PC := LR + (offset << 1) LR := oldPC + 3

	the assembler generates both halves
	LR bit[0] is set to facilitate return via BX


	Thumb branch instructions
	Branch and eXchange (BX)
	to return to ARM or Thumb caller:
	BX lr ; replaces MOV pc, lr


	Subroutine calls
	later ARMs support BLX instruction
	to synthesize BLX or earlier ARM:
	ADR r0, subr + 1 ; “+ 1” to enter Thumb mode ADR lr, return ; save return address BX r0 ; calls s...



	Thumb software interrupts
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	In case (6):
	– MOV does not affect the flags (it can be distinguished using the mnemonic CPY after v6)


	          Thumb data processing instructions
	Notes:
	in Thumb code shift operations are separate from general ALU functions
	– in ARM code a shift can be combined with an

	ALU function in a single instruction
	all data processing operations on the ‘Lo’ registers set the condition codes
	– those on the ‘Hi’ registers do not, apart from CMP which only changes the condition codes
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	Thumb multiple register data transfers
	These map directly onto the ARM forms:
	PUSH: STMFD SP!, {<regs>{, lr}}
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	– note restrictions on available addressing modes compared with ARM code



	Unique Thumb mnemonics
	Most significant differences from ARM:
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	LSR ; MOV Rd, Rd, LSR <Rs | #5>
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	– Sign extension (no shifts)
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	SETEND
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	BLX (Branch with Link and eXchange) moves to the other mode (common case)
	the LSB of LR retains the ‘parent’ mode
	BLX Rm can move to either mode (like BX)

	The ‘correct’ subroutine return is:
	BX LR
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