
Topic 8: Data Transfer Instructions

CSE 30: Computer Organization and Systems Programming

Summer Session II

Dr. Ali Irturk

Dept. of Computer Science and Engineering

University of California, San Diego

Assembly Operands: Memory

C variables map onto registers; what about

large data structures like arrays?

1 of 5 components of a computer: memory

contains such data structures

But ARM arithmetic instructions only operate

on registers, never directly on memory.

Data transfer instructions transfer data between

registers and memory:

Memory to register

Register to memory

Load/Store Instructions

 The ARM is a Load/Store Architecture:

 Does not support memory to memory data processing

operations.

 Must move data values into registers before using them.

 This might sound inefficient, but in practice isn’t:

 Load data values from memory into registers.

 Process data in registers using a number of data processing

instructions which are not slowed down by memory access.

 Store results from registers out to memory.

Load/Store Instructions

 The ARM has three sets of instructions which interact

with main memory. These are:

 Single register data transfer (LDR/STR)

 Block data transfer (LDM/STM)

 Single Data Swap (SWP)

The basic load and store instructions are:

Load and Store Word or Byte or Halfword

LDR / STR / LDRB / STRB / LDRH / STRH

 Syntax:

<LDR|STR>{<cond>}{<size>} Rd, <address>

Single register data transfer

LDR STR Word

LDRB STRB Byte

LDRH STRH Halfword

LDRSB Signed byte load

LDRSH Signed halfword load

Memory system must support all access sizes

 Syntax:

LDR{<cond>}{<size>} Rd, <address>

STR{<cond>}{<size>} Rd, <address>

e.g. LDREQB

Anatomy: 5 components of any Computer

Processor

Computer

Control
“brain”

Datapath
Registers

Memory Devices

Input

Output
Load (from)

Store (to)

These are “data transfer” instructions…

Registers are in the datapath of the

processor; if operands are in memory, we

must transfer them to the processor to

operate on them, and then transfer back to

memory when done.

Data Transfer: Memory to Register

To transfer a word of data, we need to

specify two things:

Register: r0-r15

Memory address: more difficult

 Think of memory as a single one-

dimensional array, so we can address it

simply by supplying a pointer to a memory

address.

 Other times, we want to be able to offset

from this pointer.

Remember: Load FROM memory

Base Register Addressing Modes

There are many ways in ARM to specify the

address; these are called addressing modes.

A register which contains a pointer to memory

Example: [r0]

specifies the memory address pointed to by the

value in r0

Data Transfer: Memory to Register

Load Instruction Syntax:

1 2, [3]

where

1) operation name

2) register that will receive value

3) register containing pointer to memory

ARM Instruction Name:

LDR (meaning Load Register, so 32 bits or one

word are loaded at a time)

Data Transfer: Memory to Register

Example: LDR r0,[r1]

This instruction will take the pointer in r1, and then load the

value from the memory pointed to by this calculated sum

into register r0

Notes:

r1 is called the base register

Data Flow

Data Transfer: Register to Memory

Also want to store value from a register into memory

Store instruction syntax is identical to Load

instruction syntax

MIPS Instruction Name: STR (meaning Store

Register, so 32 bits or one word are loaded at a time)

Example: STR r0,[r1]

This instruction will take the pointer in r1and store the

value from register r0 into the memory address pointed to

by the calculated sum

Remember: Store INTO Memory

Data Flow

Base Register Addressing Mode

 The memory location to be accessed is held in a base register
 STR r0, [r1] ; Store contents of r0 to location pointed to

; by contents of r1.

 LDR r2, [r1] ; Load r2 with contents of memory location

; pointed to by contents of r1.

r1

0x200
Base

Register

Memory

0x50x200

r0

0x5
Source

Register

for STR

r2

0x5
Destination

Register

for LDR

Immediate Offset Addressing Mode

To specify a memory address to copy from,

specify two things:

A register which contains a pointer to memory

A numerical offset (in bytes)

The desired memory address is the sum of

these two values.

Example: [r0,#8]

specifies the memory address pointed to by the

value in r0, plus 8 bytes

Immediate Offset Addressing Mode

Load Instruction Syntax:

1 2,[3,#4]

where

1) operation name

2) register that will receive value

3) register containing pointer to memory

4) numerical offset in bytes

Immediate Offset Addressing Mode

Example: LDR r0,[r1,#12]

This instruction will take the pointer in r1, add 12 bytes to

it, and then load the value from the memory pointed to by

this calculated sum into register r0

Example: STR r0,[r1,#-8]

This instruction will take the pointer in r0, subtract 8 bytes

from it, and then store the value from register r0 into the

memory address pointed to by the calculated sum

Notes:

r1 is called the base register

#constant is called the offset

offset is generally used in accessing elements of array or

structure: base reg points to beginning of array or structure

Immediate Offset Addressing Mode

* Example: STR r0, [r1,#12]

* To store to location 0x1f4 instead use: STR r0, [r1,#-12]

* To auto-increment base pointer to 0x20c use: STR r0, [r1, #12]!

(called immediate pre-indexed addressing mode)

* If r2 contains 3, access 0x20c by multiplying this by 4:

• STR r0, [r1, r2, LSL #2] (called scaled register offset
addressing mode)

r1

0x200
Base

Register

Memory

0x5

0x200

r0

0x5
Source

Register

for STR
Offset

12 0x20c

Post-indexed Addressing Mode

* Example: STR r0, [r1], #12

* To auto-increment the base register to location 0x1f4 instead use:

• STR r0, [r1], #-12

* If r2 contains 3, auto-increment base register to 0x20c by multiplying
this by 4:

• STR r0, [r1], r2, LSL #2

r1

0x200

Original

Base

Register

Memory

0x50x200

r0

0x5
Source

Register

for STR

Offset

12 0x20c

r1

0x20c
Updated

Base

Register

Using Addressing Modes Efficiently

* Imagine an array, the first element of which is pointed to by the contents
of r0.

* If we want to access a particular element,
then we can use pre-indexed addressing:

• r1 is element we want.

• LDR r2, [r0, r1, LSL #2]

* If we want to step through every
element of the array, for instance
to produce sum of elements in the
array, then we can use post-indexed addressing within a loop:

• r1 is address of current element (initially equal to r0).

• LDR r2, [r1], #4

Use a further register to store the address of final element,
so that the loop can be correctly terminated.

0

1

2

3

element

0

4

8

12

Memory

Offset

r0

Pointer to start

of array

Swap and Swap Byte Instructions

* Atomic operation of a memory read followed by a memory write
which moves byte or word quantities between registers and
memory.

* Syntax:

• SWP{<cond>}{B} Rd, Rm, [Rn]

* Thus to implement an actual swap of contents make Rd = Rm.

* The compiler cannot produce this instruction.

Rm Rd

Rn

32

1

temp

Memory

Pointers vs. Values

Key Concept: A register can hold any 32-bit
value. That value can be a (signed) int, an

unsigned int, a pointer (memory

address), and so on

If you write ADD r2,r1,r0

then r0 and r1 better contain values

If you write LDR r2,[r0]

then [r0] better contain a pointer

Don’t mix these up!

Addressing: Byte vs. word

Every word in memory has an address, similar

to an index in an array

Early computers numbered words like C

numbers elements of an array:

Memory[0], Memory[1], Memory[2], …

Called the “address” of a word

Computers needed to access 8-bit (byte) as well

as words (4 bytes/word)

Today machines address memory as bytes, hence

32-bit (4 byte) word addresses differ by 4

Memory[0], Memory[4], Memory[8], …

Compilation with Memory

What offset in LDR to select A[8] in C?

 4x8=32 to select A[8]: byte vs word

Compile by hand using registers:

g = h + A[8];

 g: r1, h: r2, r3:base address of A

1st transfer from memory to register:

LDR r0,[r3, #32] ; r0 gets A[8]

Add 32 to r3 to select A[8], put into r0

Next add it to h and place in g
ADD r1,r2,r0 ; r1 = h+A[8]

Notes about Memory

Pitfall: Forgetting that sequential word

addresses in machines with byte addressing

do not differ by 1.

Many an assembly language programmer has

toiled over errors made by assuming that the

address of the next word can be found by

incrementing the address in a register by 1

instead of by the word size in bytes.

So remember that for both LDR and STR, the

sum of the base address and the offset must be a

multiple of 4 (to be word aligned)

More Notes about Memory: Alignment

0 1 2 3

Aligned

Not

Aligned

ARM typically requires that all words start at

byte addresses that are multiples of 4 bytes

Called Alignment: objects must fall on address

that is multiple of their size.

0, 4, 8, or Chex

Last hex digit

of address is:

1, 5, 9, or Dhex

2, 6, A, or Ehex

3, 7, B, or Fhex

Role of Registers vs. Memory

What if more variables than registers?

Compiler tries to keep most frequently used

variables in registers

Less common in memory: spilling

Why not keep all variables in memory?

Smaller is faster:

registers are faster than memory

Registers more versatile:

 ARM arithmetic instructions can read 2, operate on

them, and write 1 per instruction

 ARM data transfer only read or write 1 operand per

instruction, and no operation

Conclusion

Memory is byte-addressable, but LDR and STR

access one word at a time.

A pointer (used by LDR and STR) is just a

memory address, so we can add to it or subtract

from it (using offset).

Conclusion

Instructions so far:

Previously:

ADD, SUB, MUL, MULA, [U|S]MULL, [U|S]MLAL, RSB

AND, ORR, EOR, BIC

MOV, MVN

LSL, LSR, ASR, ROR

CMP, B{EQ,NE,LT,LE,GT,GE}

New:

LDR, LDR, STR, LDRB, STRB, LDRH, STRH

